Delayed loss of ETB receptor-mediated vasorelaxation after cold lesion of the rat parietal cortex

J Cereb Blood Flow Metab. 1998 Dec;18(12):1357-64. doi: 10.1097/00004647-199812000-00010.

Abstract

The aim of this study was to investigate the involvement of endothelins (ET) in brain injury. The effect of ET was studied in the isolated basilar artery (BA) taken from control, sham-operated, and cold-lesioned rats. Cold lesion was induced by application of a precooled (-78 degrees C) copper cylinder (outer diameter 5 mm) for 60 seconds to the intact dura over the parietal cortex. After precontraction with prostaglandin (PG) F2alpha, ET-3 (10(-10) to 10(-8) mol/L) dilated BA with a pD2 (negative log of the half-maximal concentration) of 9.06+/-0.031 (mean +/- SD) and a maximal effect (Emax) of 1.64+/-1.0 mN at 3 x 10(-9) mol/L in sham-operated animals. This dilation was reduced 24 and 48 hours after cold lesion by 33% and 73%, respectively, at 3 x 10(-9) mol/L. The effects of acetylcholine (10(-8) to 10(-4) mol/L) and sodium nitroprusside (10(-3) mol/L) were unaltered. Activation of the ETB receptor in thoracic aorta by the specific agonist IRL 1620 also resulted in a reduced dilation (51% by 48 hours after cold lesion). Reverse transcriptase-polymerase chain reaction of the BA showed unaltered expression of mRNA for the ETB receptor after cold lesion whereas ETB immunoreactivity in BA and in its intraparenchymal arteries was reduced at 24 and 48 hours. In contrast to the reduction of ET-3-induced dilation, the constrictor effects of ET-1 and ET-3 were retained after cold lesion. Endothelin-1 (10(-12) to 10(-6) mol/L) dose-dependently contracted segments of untreated control BA segments under resting conditions with a pD2 of 8.03+/-0.22 and an Emax of 6.35+/-0.70 mN. Further evidence that the constrictor ability of BA was not influenced by cold lesion is given by the unaltered response to 124 mmol/L K+ and 10(-6) mol/L serotonin. We conclude that the ETB receptor of BA after cold lesion is downregulated specifically, apparently at the posttranscriptional level. Because the ETB-mediated dilation in thoracic aorta was also reduced, downregulation of the ETB receptor apparently is not restricted to cerebral arteries. The nitric oxide-cyclic guanosine monophosphate system in BA is, however, intact.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Basilar Artery / drug effects
  • Basilar Artery / metabolism
  • Basilar Artery / physiology*
  • Cold Temperature*
  • Endothelin-1 / pharmacology
  • Endothelin-3 / pharmacology
  • Male
  • Parietal Lobe / physiology*
  • Rats
  • Rats, Inbred WKY
  • Receptor, Endothelin B
  • Receptors, Endothelin / metabolism
  • Receptors, Endothelin / physiology*
  • Vasoconstriction / physiology
  • Vasodilation / physiology*
  • Vasomotor System / drug effects
  • Vasomotor System / physiology

Substances

  • Endothelin-1
  • Endothelin-3
  • Receptor, Endothelin B
  • Receptors, Endothelin