Does a second generation of centrally acting antihypertensive drugs really exist?

J Auton Nerv Syst. 1998 Oct 15;72(2-3):94-7. doi: 10.1016/s0165-1838(98)00093-9.

Abstract

The site of the hypotensive action of imidazoline compounds, such as clonidine, was first identified within the rostroventrolateral part of the brainstem: the nucleus reticularis lateralis. After that, it was shown that imidazolines and related substances reduced blood pressure when applied in this area whereas catecholamines were not capable of producing such an effect. These data led us to suggest the existence of receptors specific for imidazoline-like compounds different from the alpha2-adrenoceptors. Soon after, the existence of imidazoline binding sites was reported in the brain and in a variety of peripheral tissues including the human kidney. As expected, these specific binding sites do not bind the catecholamines. The imidazoline binding sites are already subclassified in two groups: the I1-subtype sensitive to clonidine and idazoxan, and the I2-subtype, sensitive to idazoxan and nearly insensitive to clonidine. Functional studies confirmed that the hypotensive effects of clonidine-like drugs involved imidazoline receptors while their most frequent side effects only involved alpha2-adrenoceptors. However, recent functional evidence suggests that a cross talk between imidazoline receptors and alpha2-adrenoceptors is necessary to trigger a hypotensive effect within the ventral brainstem. Rilmenidine and Moxonidine are the leader compounds of a new class of antihypertensive drugs selective for imidazoline receptors. At hypotensive doses, these drugs are devoid of significant sedative effect. Rilmenidine evoked hypotension when injected within the nucleus reticularis lateralis region; it competed for [3H]-clonidine bound to specific imidazoline binding sites in human medullary membrane preparations but proved more selective for cerebral imidazoline receptors than clonidine. It is suggested that this selectivity might explain the low incidence of their side effects. Additional potentially beneficial actions on cardiac arrhythmias or congestive heart failure enlarge the therapeutic interest of imidazoline-related drugs. Recent binding and functional data throw a new light on the optimal pharmacological profile of this second generation of centrally acting antihypertensive drugs.

Publication types

  • Review

MeSH terms

  • Animals
  • Antihypertensive Agents / pharmacology*
  • Brain / drug effects*
  • Brain / metabolism
  • Humans
  • Imidazoles / metabolism*
  • Imidazoline Receptors
  • Receptors, Drug / drug effects*

Substances

  • Antihypertensive Agents
  • Imidazoles
  • Imidazoline Receptors
  • Receptors, Drug