Electrophysiological parameters are well-suited to detect changes in cerebral function. The present study investigates whether balanced anaesthesia with remifentanil during nociceptive stimulation is associated with changes in clinical and electrophysiological parameters indicating inadequate depth of anaesthesia. Following IRB approval and written informed consent, 23 patients (ASA: I; age: 36 +/- 11) scheduled for elective gynaecological laparoscopy were included in the study. Without any premedication, anaesthesia was induced with remifentanil (1.0 microgram/kg bolus injection), propofol (0.5 mg/kg added by repetitive (10 mg) bolus injections every 10 s until unconciousness) and vecuronium (0.1 mg/kg). Following endotracheal intubation (normoventilation: PetCO2: 36 bis 38 mmHg), remifentanil infusion was started with continuous doses of 0.5 microgram/kg/min over 5 minutes and maintained with 0.25 microgram/kg/min during surgery. Remifentanil was randomly combined with propofol (group 1: 100 micrograms/kg/min; n = 7), enflurane (group 2: 0.5 MAC; n = 8) or isoflurane (group 3: 0.5 MAC; n = 8). Monitoring included: heart rate (beats/min), mean arterial pressure (mmHg), oxygen saturation (%), endtidal CO2 (mmHg) and endtidal enflurane and isoflurane (%). EEG: 2-channel recordings of Fz versus mastoid and ECG (artefact control) during steady-state anaesthesia and surgery. Following fast-fourier-transformation (4 s; 256/s; 0.5 to 35.0 Hz), spectral power densities were calculated for the selected frequency bands. Auditory evoked potentials (AEP; middle latency) were registered simultaneously after binaural stimulation via head-phones click-stimulation (6 Hz; 75 dB above hearing threshold; 512 stimulations per average). Bandpass was 0.01 to 2.0 kHz.
Analysis: Na, Pa, Nb (latencies; ms) and peak-to-peak amplitudes (NaPa, PaNb; microV). EEG and AEP recording technique [15]. The study protocol included baseline values from pre-intubation, pre-surgery, the respective post-stimulation values (1 min, 3 min, 5 min) and all data at five-minute intervals during surgery until emergence from anaesthesia. During steady-state study conditions with defined remifentanil applications, mean data indicate that in response to nociceptive stimuli no changes in clinical or electrophysiological parameters were observed. In contrast to other studies using different anaesthetic techniques, the present data from remifentanil indicate very stable haemodynamic and electrophysiological parameters (EEG, AEP) during noxious stimulations. Adjustable and with no plasma accumulation, remifentanil demonstrates potent antinociceptive effects resulting in signs of adequate anaesthesia.