We examined the roles of cell- and antibody-mediated immunity in urease vaccine-induced protection against Helicobacter pylori infection. Normal and knockout mice deficient in major histocompatibility complex (MHC) class I, MHC class II, or B cell responses were mucosally immunized with urease plus Escherichia coli heat-labile enterotoxin (LT), or parenterally immunized with urease plus aluminum hydroxide or a glycolipid adjuvant, challenged with H. pylori strain X47-2AL, and H. pylori organisms and leukocyte infiltration in the gastric mucosa quantified. In an adjuvant/route study in normal mice, there was a direct correlation between the level of protection and the density of T cells recruited to the gastric mucosa. In knockout studies, oral immunization with urease plus LT protected MHC class I knockout mice [beta2-microglobulin (-/-)] but not MHC class II knockout mice [I-Ab (-/-)]. In B cell knockout mice [microMT (-/-)], vaccine-induced protection was equivalent to that observed in immunized wild-type (+/+) mice; no IgA+ cells were detected in the stomach, but levels of CD4(+) cells equivalent to those in the wild-type strain (+/+) were seen. These studies indicate that protection of mice against H. pylori infection by immunization with the urease antigen is dependent on MHC class II-restricted, cell-mediated mechanisms, and antibody responses to urease are not required for protection.