Background: Clarithromycin is one of the most important antibiotics for Helicobacter pylori eradication. However, 5-10% of strains are reported to be resistant. It has been shown that one point mutation in the 23S rRNA gene is associated with resistance to clarithromycin.
Aims: To establish a polymerase chain reaction (PCR) system which amplifies a segment of the 23S rRNA gene containing the mutation points with primers specific for H pylori, so that H pylori infection and the mutation associated with clarithromycin resistance can be examined simultaneously.
Methods: To detect H pylori infection and the mutation simultaneously, primers specific for the H pylori 23S rRNA gene were designed based on sequence conservation among H pylori strains and sequence specificity as compared with other bacteria. DNA from 57 cultured strains and from 39 gastric juice samples was amplified in the seminested 23S rRNA PCR. Clinical applicability was evaluated in 85 patients.
Results: DNA samples from 57 cultured strains were all amplified. The novel assay and the urease A PCR agreed in 37/39 gastric juice samples with no false positives. The assay did not amplify the DNA of bacteria other than H pylori. Eight of 85 samples had the mutation before treatment. In clarithromycin based treatment, eradication was achieved in 2/5 (40%) with the mutation and 29/34 (85%) without the mutation.
Conclusion: The assay using gastric juice is quick (within 12 hours) and non-invasive (endoscopy not required), enabling rapid initiation of appropriate antibiotic treatment.