Sixty-eight female neonatal pigs selected for seven (Experiment 1) or eight (Experiment 2) generations for high (HG) or low (LG) plasma cholesterol were used to test the hypothesis that neonatal dietary cholesterol fed during the first 4 or 8 wk of postnatal life increases the cholesterol content of the cerebrum in young adulthood following free access to a high-fat (15%), high-cholesterol (0.5%) diet from 8 to 20 or 24 wk of age. Pigs were removed from their dams at 1 d of age and given free access to a sow-milk replacer diet containing 9.5% coconut fat and 0 or 0.5 % cholesterol. All pigs (except four HG and four LG pigs in Experiment 2, which were deprived of cholesterol throughout the study) were fed the high-fat, high-cholesterol diet from 8 wk to termination at 20 or 24 wk of age. Cerebrum weight and cholesterol concentration were higher in pigs fed cholesterol neonatally than in those deprived of cholesterol neonatally in both experiments, but weight and cholesterol concentration were unaffected by genetic line. Cholesterol concentrations in longissimus and semitendinosus muscles and in subcutaneous fat were unaffected by diet or genetic line. We conclude that dietary cholesterol deprivation during the first 4 to 8 wk of life in piglets is associated with lower cholesterol concentration and total content in the young adult cerebrum than in pigs supplemented with cholesterol in early life. These data support previous observations and suggest the possibility of a metabolic need for neonatal dietary cholesterol in normal brain development.