Colloidal Au-enhanced surface plasmon resonance immunosensing

Anal Chem. 1998 Dec 15;70(24):5177-83. doi: 10.1021/ac9809940.

Abstract

Surface plasmon resonance (SPR) biosensing using colloidal Au enhancement is reported. Immobilization of approximately 11-nm-diameter colloidal Au to an evaporated Au film results in a large shift in plasmon angle, a broadened plasmon resonance, and an increase in minimum reflectance. The incorporation of colloidal Au into SPR biosensing results in increased SPR sensitivity to protein-protein interactions when a Au film-immobilized antibody and an antigen-colloidal Au conjugate comprise the binding pair. A highly specific particle-enhanced analogue of a sandwich immunoassay is also demonstrated by complexing the Au particle to a secondary antibody. A tremendous signal amplification is observed, as addition of the antibody-Au colloid conjugate results in a 25-fold larger signal than that due to addition of a free antibody solution that is 6 orders of magnitude more concentrated. Picomolar detection of human immunoglobulin G has been realized using particle enhancement, with the theoretical limits for the technique being much lower. Finally, a quasi-linear relationship between particle coverage and plasmon angle shift is presented, thereby providing for a direct correlation between plasmon shift and solution antigen concentration. Together, these results represent significant advances in the generality and sensitivity of SPR as it is applied to biosensing.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Colloids*
  • Humans
  • Immunoassay / methods*
  • Immunoglobulin G / analysis*
  • Surface Plasmon Resonance*

Substances

  • Colloids
  • Immunoglobulin G