Two models of respiratory tract infection were used to investigate the pharmacodynamics of amoxicillin-clavulanate against Streptococcus pneumoniae. Eight strains of S. pneumoniae were used in a mouse model in which the animals were infected intranasally and were then treated with a range of doses and dose intervals. The time that the plasma amoxicillin concentration remained above the MIC (T>MIC) correlated well with bacterial killing, such that if T>MIC was below 20% there was no effect on bacterial numbers in the lungs. As T>MIC increased, the response, in terms of decreased bacterial load, improved and at T>MICs of greater than 35 to 40% of the dosing interval, bacteriological cure was maximal. On the basis of equivalent T>MICs, these data would suggest that in humans a dosage of 500 mg three times daily (t.i.d.) should have efficacy equal to that of a dosage of 875 mg twice daily (b.i.d.). This hypothesis was evaluated in a rat model in which amoxicillin-clavulanate was given by computer-controlled intravenous infusion to achieve concentrations that approximate the concentrations achieved in the plasma of humans following oral administration of 500/125 mg t.i.d. or 875/125 mg b.i.d. Infusions continued for 3 days and bacterial numbers in the lungs 2 h after the cessation of the infusion were significantly reduced (P < 0.01) by both treatments in strains of S. pneumoniae for which amoxicillin MICs were below 2 microg/ml. When tested against a strain of S. pneumoniae for which the amoxicillin MIC was 4 microg/ml, the simulated 500/125-mg dose was ineffective but the 875/125-mg dose demonstrated a small but significant (P < 0. 01) reduction in bacterial numbers. These data confirm the findings in the mouse and indicate that amoxicillin-clavulanate administered at 875/125 mg b.i.d. would be as effective clinically as amoxicillin-clavulanate administered at 500/125 mg t.i.d.