Thymic epithelium, including nurse cells (TEC/TNC), as well as other thymic stromal cells (macrophages and dentritic cells), express a repertoire of polypeptide belonging to various neuroendocrine protein families (such as the neurophypophysial, tachykinin, neurotensin and insulin families). A hierarchy of dominance exists in the organization of the thymic repertoire of neuroendocrine precursors. Oxytocin (OT) is more expressed in the TEC/TNC than vasopressin (VP); insulin-like growth factor 2 (IGF-2) thymic expression predominates over IGF-1, and much more over (pro)insulin. Thus, OT was proposed to be the self antigen of the neurohypophysial family, and IGF-2 the self antigen precursor of the insulin family. The dual role of the thymus in T-cell life and death is recapitulated at the level of the thymic neuroendocrine protein repertoire. Indeed, thymic polypeptides behave as accessory signals involved in T-cell development and positive selection according to the cryptocrine model of signaling. Moreover, thymic neuroendocrine polypeptides are the source of self antigens presented by thymic MHC molecules to developing pre-T cells. This presentation might induce the negative selection of T cells bearing a randomly rearranged antigen receptor (TCR) oriented against neuroendocrine families. Using an animal model of autoimmune type 1 diabetes (BB rat), we have shown a defect in intrathymic expression of the self antigen of the insulin family (IGF-2) and in IGF-2-mediated T-cell education to recognize and tolerate the insulin family. Altogether these studies have enlightened the crucial role played by the thymus in the induction of the central self tolerance of neuroendocrine families. The tolerogenic properties of thymic self peptides could be used in a novel type of vaccination for the prevention of autoimmune diseases.