Uptake and storage of monoamines in secretory granules is accomplished by vesicular monoamine transporters, and it is likely that vesicular monoamine transporter 2 (VMAT2) is important for histamine transport in vivo. In the present study we have used the pre-B-cell line Ea3.123 to investigate the mechanisms involved in the transcriptional activation of the VMAT2 gene. In Ea3.123 cells, VMAT2 mRNA abundance was increased following mobilization of intracellular calcium, and this increased mRNA expression was paralleled by changes in l-histidine decarboxylase mRNA, suggesting that VMAT2 may be responsible for sequestration of histamine into secretory vesicles in this cell line. We cloned the 5'-flanking region of the VMAT2 gene and determined its transcriptional start site by primer extension of rat VMAT2 mRNA. There was no TATA or TATA-like sequence upstream of this region; instead there were GC-rich elements, Ca2+/cAMP-response-element- and SP1-binding motifs. Approx. 900 bp upstream of the transcriptional start site was a purine-pyrimidine repeat sequence that may form a Z-DNA structure. A series of 5'-deletional VMAT2-promoter segments cloned upstream of a luciferase reporter were capable of driving transcription and indicated the presence of multiple regulatory elements, while stimulation with ionomycin or PMA resulted in an increased level of the transcriptional activity of the 5'-promoter segments studied.