The cell surface glycoprotein CD8 functions as a coreceptor with the TCR for interaction with MHC class I. The cocrystal structure of the CD8 alpha alpha-MHC complex showed that one CD8 Ig domain provided the majority of the contact with MHC class I and that residue R4 of that domain contacted the alpha2 domain of MHC class I. We previously showed by mutational analysis that this residue was critical for binding to MHC class I. To determine which of the Ig domains for the CD8 alpha beta heterodimer would make the most contact with class I MHC, we expressed single-chain or dimeric forms of CD8 on COS-7 cells and measured the adhesion of MHC class I positive cells. We found that when one of the R4 residues was mutated in a CD8 alpha alpha homodimer binding comparable to that of wild type was observed, whereas a double R4 mutant severely impaired binding. However, when mutant CD8 alpha (R4K) was coexpressed with wild-type CD8 beta, binding was not observed. These results support the model in which it is CD8 alpha, not CD8 beta, that is making the most of the contact with MHC class I, including the alpha 2 domain. In addition, they demonstrate that a single-chain form of CD8 alpha alpha can bind to MHC class I.