The design of conditional gene expression systems restricted to given tissues or cellular types is an important issue of gene therapy. Systems based on the targeting of molecules characteristic of the pathological state of tissues would be of interest. We have developed a synthetic transcription factor by fusing a single chain antibody (scFv) directed against p53 with the bacterial tetracycline repressor as a DNA binding domain. This hybrid protein binds to p53 and can interact with a synthetic promoter containing tetracycline-operator sequences. Gene expression can now be specifically achieved in tumor cells harboring an endogenous mutant p53 but not in a wild-type p53 containing tumor cell line or in a non-transformed cell line. Thus, a functional transactivator centered on single chain antibodies can be expressed intracellularly and induce gene expression in a scFv-mediated specific manner. This novel class of transcriptional transactivators could be referred as 'trabodies' for transcription-activating-antibodies. The trabodies technology could be useful to any cell type in which a disease related protein could be the target of specific antibodies.