Mitosis in mammalian cells is accompanied by a dramatic inhibition of endocytosis. We have found that the addition of amphyphilic compounds to metaphase cells increases the endocytosis rate even to interphase levels. Detergents and solvents all increased endocytosis rate, and the extent of increase was in direct proportion to the concentration added. Although the compounds could produce a variety of different effects, we have found a strong correlation with a physical alteration in the membrane tension as measured by the laser tweezers. Plasma membrane tethers formed by latex beads pull back on the beads with a force that was related to the in-plane bilayer tension and membrane- cytoskeletal adhesion. We found that as cells enter mitosis, the membrane tension rises as the endocytosis rate decreases; and as cells exited mitosis, the endocytosis rate increased as the membrane tension decreased. The addition of amphyphilic compounds decreased membrane tension and increased the endocytosis rate. With the detergent, deoxycholate, the endocytosis rate was restored to interphase levels when the membrane tension was restored to interphase levels. Although biochemical factors are clearly involved in the alterations in mitosis, we suggest that endocytosis is blocked primarily by the increase in apparent plasma membrane tension. Higher tensions inhibit both the binding of the endocytic complex to the membrane and mechanical deformation of the membrane during invagination. We suggest that membrane tension is an important regulator of the endocytosis rate and alteration of tension is sufficient to modify endocytosis rates during mitosis. Further, we postulate that the rise in membrane tension causes cell rounding and the inhibition of motility, characteristic of mitosis.