Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

3,117 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
A precomputed approach for real-time haptic interaction with fluids.
Dobashi Y, Yamamoto T, Sato M, Hasegawa S, Kato M, Nishita T. Dobashi Y, et al. Among authors: hasegawa s. IEEE Comput Graph Appl. 2007 May-Jun;27(3):90-2. doi: 10.1109/mcg.2007.52. IEEE Comput Graph Appl. 2007. PMID: 17523366 Review. No abstract available.
XAFS study of Fe- and Mn-promoted sulfated zirconia.
Yamamoto T, Tanaka T, Takenaka S, Yoshida S, Onari T, Takahashi Y, Kosaka T, Hasegawa S. Yamamoto T, et al. Among authors: hasegawa s. J Synchrotron Radiat. 1999 May 1;6(Pt 3):425-7. doi: 10.1107/S0909049598017762. Epub 1999 May 1. J Synchrotron Radiat. 1999. PMID: 15263332 No abstract available.
Role and prognostic value of growth differentiation factor 15 in patient of heart failure with preserved ejection fraction: insights from the PURSUIT-HFpEF registry.
Sakamoto D, Matsuoka Y, Nakatani D, Okada K, Sunaga A, Kida H, Sato T, Kitamura T, Tamaki S, Seo M, Yano M, Hayashi T, Nakagawa A, Nakagawa Y, Yasumura Y, Yamada T, Hikoso S, Sotomi Y, Sakata Y; OCVC-Heart Failure Investigators. Sakamoto D, et al. Open Heart. 2025 Jan 19;12(1):e003008. doi: 10.1136/openhrt-2024-003008. Open Heart. 2025. PMID: 39832941
A machine learning model to predict neurological deterioration after mild traumatic brain injury in older adults.
Abe D, Inaji M, Hase T, Suehiro E, Shiomi N, Yatsushige H, Hirota S, Hasegawa S, Karibe H, Miyata A, Kawakita K, Haji K, Aihara H, Yokobori S, Maeda T, Onuki T, Oshio K, Komoribayashi N, Suzuki M, Maehara T. Abe D, et al. Among authors: hasegawa s. Front Neurol. 2025 Jan 3;15:1502153. doi: 10.3389/fneur.2024.1502153. eCollection 2024. Front Neurol. 2025. PMID: 39830200 Free PMC article.
3,117 results