Informing pandemic response in the face of uncertainty. An evaluation of the U.S. COVID-19 Scenario Modeling Hub.
Howerton E, Contamin L, Mullany LC, Qin M, Reich NG, Bents S, Borchering RK, Jung SM, Loo SL, Smith CP, Levander J, Kerr J, Espino J, van Panhuis WG, Hochheiser H, Galanti M, Yamana T, Pei S, Shaman J, Rainwater-Lovett K, Kinsey M, Tallaksen K, Wilson S, Shin L, Lemaitre JC, Kaminsky J, Hulse JD, Lee EC, McKee C, Hill A, Karlen D, Chinazzi M, Davis JT, Mu K, Xiong X, Piontti APY, Vespignani A, Rosenstrom ET, Ivy JS, Mayorga ME, Swann JL, España G, Cavany S, Moore S, Perkins A, Hladish T, Pillai A, Toh KB, Longini I Jr, Chen S, Paul R, Janies D, Thill JC, Bouchnita A, Bi K, Lachmann M, Fox S, Meyers LA; UT COVID-19 Modeling Consortium; Srivastava A, Porebski P, Venkatramanan S, Adiga A, Lewis B, Klahn B, Outten J, Hurt B, Chen J, Mortveit H, Wilson A, Marathe M, Hoops S, Bhattacharya P, Machi D, Cadwell BL, Healy JM, Slayton RB, Johansson MA, Biggerstaff M, Truelove S, Runge MC, Shea K, Viboud C, Lessler J.
Howerton E, et al. Among authors: vespignani a.
medRxiv [Preprint]. 2023 Jul 3:2023.06.28.23291998. doi: 10.1101/2023.06.28.23291998.
medRxiv. 2023.
PMID: 37461674
Free PMC article.
Updated.
Preprint.