Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

441 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Machine learning survival models trained on clinical data to identify high risk patients with hormone responsive HER2 negative breast cancer.
Fanizzi A, Pomarico D, Rizzo A, Bove S, Comes MC, Didonna V, Giotta F, La Forgia D, Latorre A, Pastena MI, Petruzzellis N, Rinaldi L, Tamborra P, Zito A, Lorusso V, Massafra R. Fanizzi A, et al. Among authors: lorusso v. Sci Rep. 2023 May 26;13(1):8575. doi: 10.1038/s41598-023-35344-9. Sci Rep. 2023. PMID: 37237020 Free PMC article.
Assessing the cost-effectiveness of waiting list reduction strategies for a breast radiology department: a real-life case study.
Fanizzi A, Graps E, Bavaro DA, Farella M, Bove S, Campobasso F, Comes MC, Cristofaro C, Forgia D, Milella M, Iacovelli S, Villani R, Signorile R, De Bartolo A, Lorusso V, Massafra R. Fanizzi A, et al. Among authors: lorusso v. BMC Health Serv Res. 2023 May 23;23(1):526. doi: 10.1186/s12913-023-09447-y. BMC Health Serv Res. 2023. PMID: 37221516 Free PMC article.
Explainable 3D CNN based on baseline breast DCE-MRI to give an early prediction of pathological complete response to neoadjuvant chemotherapy.
Comes MC, Fanizzi A, Bove S, Didonna V, Diotiaiuti S, Fadda F, La Forgia D, Giotta F, Latorre A, Nardone A, Palmiotti G, Ressa CM, Rinaldi L, Rizzo A, Talienti T, Tamborra P, Zito A, Lorusso V, Massafra R. Comes MC, et al. Among authors: lorusso v. Comput Biol Med. 2024 Apr;172:108132. doi: 10.1016/j.compbiomed.2024.108132. Epub 2024 Mar 14. Comput Biol Med. 2024. PMID: 38508058 Free article.
High levels of autotaxin and lysophosphatidic acid predict poor outcome in treatment of resectable gastric carcinoma.
Schirizzi A, Donghia R, De Nunzio V, Renna N, Centonze M, De Leonardis G, Lorusso V, Fantasia A, Coletta S, Stabile D, Ferro A, Notarnicola M, Ricci AD, Lotesoriere C, Lahn M, D'Alessandro R, Giannelli G. Schirizzi A, et al. Among authors: lorusso v. Eur J Cancer. 2024 Dec;213:115066. doi: 10.1016/j.ejca.2024.115066. Epub 2024 Oct 13. Eur J Cancer. 2024. PMID: 39426076 Free article.
Analysis of the Performance and Accuracy of a PSA and PSA Ratio-Based Nomogram to Predict the Probability of Prostate Cancer in a Cohort of Patients with PIRADS 3 Findings at Multiparametric Magnetic Resonance Imaging.
Palmisano F, Lorusso V, Legnani R, Martorello V, Nedbal C, Tramanzoli P, Marchesotti F, Ferraro S, Talso M, Granata AM, Sighinolfi MC, Rocco B, Gregori A. Palmisano F, et al. Among authors: lorusso v. Cancers (Basel). 2024 Sep 5;16(17):3084. doi: 10.3390/cancers16173084. Cancers (Basel). 2024. PMID: 39272942 Free PMC article.
Prognostic power assessment of clinical parameters to predict neoadjuvant response therapy in HER2-positive breast cancer patients: A machine learning approach.
Fanizzi A, Latorre A, Bavaro DA, Bove S, Comes MC, Di Benedetto EF, Fadda F, La Forgia D, Giotta F, Palmiotti G, Petruzzellis N, Rinaldi L, Rizzo A, Lorusso V, Massafra R. Fanizzi A, et al. Among authors: lorusso v. Cancer Med. 2023 Nov;12(22):20663-20669. doi: 10.1002/cam4.6512. Epub 2023 Oct 31. Cancer Med. 2023. PMID: 37905688 Free PMC article.
441 results