Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

22 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
X-rays radiomics-based machine learning classification of atypical cartilaginous tumour and high-grade chondrosarcoma of long bones.
Gitto S, Annovazzi A, Nulle K, Interlenghi M, Salvatore C, Anelli V, Baldi J, Messina C, Albano D, Di Luca F, Armiraglio E, Parafioriti A, Luzzati A, Biagini R, Castiglioni I, Sconfienza LM. Gitto S, et al. Among authors: interlenghi m. EBioMedicine. 2024 Mar;101:105018. doi: 10.1016/j.ebiom.2024.105018. Epub 2024 Feb 19. EBioMedicine. 2024. PMID: 38377797 Free PMC article.
Using Radiomics and Machine Learning Applied to MRI to Predict Response to Neoadjuvant Chemotherapy in Locally Advanced Cervical Cancer.
Chiappa V, Bogani G, Interlenghi M, Vittori Antisari G, Salvatore C, Zanchi L, Ludovisi M, Leone Roberti Maggiore U, Calareso G, Haeusler E, Raspagliesi F, Castiglioni I. Chiappa V, et al. Among authors: interlenghi m. Diagnostics (Basel). 2023 Oct 6;13(19):3139. doi: 10.3390/diagnostics13193139. Diagnostics (Basel). 2023. PMID: 37835882 Free PMC article.
MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities.
Gitto S, Interlenghi M, Cuocolo R, Salvatore C, Giannetta V, Badalyan J, Gallazzi E, Spinelli MS, Gallazzi M, Serpi F, Messina C, Albano D, Annovazzi A, Anelli V, Baldi J, Aliprandi A, Armiraglio E, Parafioriti A, Daolio PA, Luzzati A, Biagini R, Castiglioni I, Sconfienza LM. Gitto S, et al. Among authors: interlenghi m. Radiol Med. 2023 Aug;128(8):989-998. doi: 10.1007/s11547-023-01657-y. Epub 2023 Jun 19. Radiol Med. 2023. PMID: 37335422 Free PMC article.
Radiomics and Molecular Classification in Endometrial Cancer (The ROME Study): A Step Forward to a Simplified Precision Medicine.
Bogani G, Chiappa V, Lopez S, Salvatore C, Interlenghi M, D'Oria O, Giannini A, Leone Roberti Maggiore U, Chiarello G, Palladino S, Bascio LS, Castiglioni I, Raspagliesi F. Bogani G, et al. Among authors: interlenghi m. Healthcare (Basel). 2022 Dec 7;10(12):2464. doi: 10.3390/healthcare10122464. Healthcare (Basel). 2022. PMID: 36553988 Free PMC article.
Development and Validation of an AI-driven Mammographic Breast Density Classification Tool Based on Radiologist Consensus.
Magni V, Interlenghi M, Cozzi A, Alì M, Salvatore C, Azzena AA, Capra D, Carriero S, Della Pepa G, Fazzini D, Granata G, Monti CB, Muscogiuri G, Pellegrino G, Schiaffino S, Castiglioni I, Papa S, Sardanelli F. Magni V, et al. Among authors: interlenghi m. Radiol Artif Intell. 2022 Mar 16;4(2):e210199. doi: 10.1148/ryai.210199. eCollection 2022 Mar. Radiol Artif Intell. 2022. PMID: 35391766 Free PMC article.
A decision support system based on radiomics and machine learning to predict the risk of malignancy of ovarian masses from transvaginal ultrasonography and serum CA-125.
Chiappa V, Interlenghi M, Bogani G, Salvatore C, Bertolina F, Sarpietro G, Signorelli M, Ronzulli D, Castiglioni I, Raspagliesi F. Chiappa V, et al. Among authors: interlenghi m. Eur Radiol Exp. 2021 Jul 26;5(1):28. doi: 10.1186/s41747-021-00226-0. Eur Radiol Exp. 2021. PMID: 34308487 Free PMC article.
22 results