Astaxanthin Supplementation Effects in Right Ventricle of Rats Exposed to Chronic Intermittent Hypobaric Hypoxia

Antioxidants (Basel). 2024 Oct 18;13(10):1269. doi: 10.3390/antiox13101269.

Abstract

In Chile, individuals are commonly exposed to high altitude due to the work shift system, involving days of exposure to high altitude followed by days at sea level over the long term, which can result in chronic intermittent hypobaric hypoxia (CIHH). CIHH can cause high-altitude pulmonary hypertension (HAPH), the principal manifestation of which is right ventricular hypertrophy (RVH), in some cases leading to heart failure and eventually death. Studies have shown the contribution of oxidative stress and inflammation to RVH development. Recently, it was determined that the pigment astaxanthin has high antioxidant capacity and strong anti-inflammatory and cardioprotective effects. Therefore, the aim of this study was to determine the effects of astaxanthin on RVH development in rats subjected to CIHH.

Methods: Thirty two male Wistar rats were randomly assigned to the following groups (n = 8 per group): the normoxia with vehicle (NX), normoxia with astaxanthin (NX + AS), chronic intermittent hypobaric hypoxia with vehicle (CIHH), and chronic intermittent hypobaric hypoxia with astaxanthin (CIHH + AS) groups. CIHH was simulated by 2 days in a hypobaric chamber followed by 2 days at sea level for 29 days.

Results: Exposure to CIHH induced RVH and increased lipid peroxidation (MDA), Nox2 expression, and SOD activity, however, it decreased pro-IL-1β expression. Astaxanthin restored oxidative stress markers (Nox2 and MDA), increased GPx activity, and decreased RVH compared to CIHH.

Conclusion: Astaxanthin alleviates RVH and reduces Nox2 and MDA levels while increasing GPx activity in rats subjected to CIHH. These findings provide new insights of astaxanthin as a new nutraceutical against high-altitude effects.

Keywords: altitude hypoxia; hypertrophy; nutraceutical; oxidative stress; right ventricle.