Rapid cut-off of blood supply in diseases involving thrombosis is a major cause of morbidity and mortality worldwide. However, the current thrombolysis strategies offer limited results due to the therapeutics' short half-lives, low targeting ability, and unexpected bleeding complications. Inspired by the innate roles of platelets in hemostasis and pathological thrombus, platelet membrane-camouflaged polymeric nanoparticles (nanoplatelets) are developed for targeting delivery of the thrombolytic drug, recombinant tissue plasminogen activator (rt-PA), to local thrombus sites. The tailor-designed nanoplatelets efficiently accumulate at the thrombi in pulmonary embolism and mesenteric arterial thrombosis model mice, eliciting a significantly enhanced thrombolysis activity compared to free rt-PA. In addition, the nanoplatelets exhibit improved therapeutic efficacy over free rt-PA in an ischemic stroke model. Analysis of in vivo coagulation indicators suggests the nanoplatelets might possess a low risk of bleeding complications. The hybrid biomimetic nanoplatelets described offer a promising solution to improve the efficacy and reduce the bleeding risk of thrombolytic therapy in a broad spectrum of thrombosis diseases.
Keywords: nanoplatelets; plasminogen activators; targeted drug delivery; thrombus.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.