The notorious dendrite growth and hydrogen evolution reaction (HER) are considered as main barriers that hinder the stability of the Zn-metal anode. Herein, molecular engineering is conducted to optimize the inner Helmholtz plane with a trace of amphiphilic dibenzenesulfonimide (BBI) in an aqueous electrolyte. Both experimental and computational results reveal that the BBI- binds strongly with Zn2+ to form {Zn(BBI)(H2 O)4 }+ in the electrical double layer and reduces the water supply to the Zn anode. During the electroplating process, {Zn(BBI)(H2 O)4 }+ is "compressed" to the Zn anode/electrolyte interface by Zn2+ flow, and accumulated and adsorbed on the surface of the Zn anode to form a dynamic water-poor inner Helmholtz plane to inhibit HER. Meanwhile, the{Zn(BBI)(H2 O)4 }+ on the Zn anode surface possesses an even distribution, delivering uniform Zn2+ flow for smooth deposition without Zn dendrite growth. Consequently, the stability of the Zn anode is largely improved with merely 0.02 M BBI- to the common electrolyte of 1 M ZnSO4 . The assembled Zn||Zn symmetric cell can be cycled for more than 1180 h at 5 mA cm-2 and 5 mA h cm-2 . Besides, the practicability in Zn||NaV3 O8 ·1.5 H2 O full cell is evaluated, which suggests efficient storage even under a high mass loading of 12 mg cm-2 .
Keywords: Zn-metal anodes; aqueous batteries; dibenzenesulfonimide; inner Helmholtz plane; stability.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.