The Biocompatibility and the Effect of Titanium and PEKK on the Osseointegration of Customized Facial Implants

Materials (Basel). 2024 Sep 9;17(17):4435. doi: 10.3390/ma17174435.

Abstract

The purpose of this study was to investigate the optimization of computer-aided design/computer-aided manufacturing (CAD/CAM) patient-specific implants for mandibular facial bone defects and compare the biocompatibility and osseointegration of machined titanium (Ma), Sandblasted/Large-grit/Acid-etched (SLA) titanium, and polyetherketoneketone (PEKK) facial implants. We hypothesized that the facial implants made of SLA titanium had superior osseointegration when applied to the gonial angle defect and prevented the senile atrophy of the bone. Histologic findings of the soft-tissue reaction, hard-tissue reaction, and bone-implant contact (BIC (%) of 24 Ma, SLA, and PEKK facial implants at 8 and 12 weeks were investigated. There was no statistical difference in the soft tissue reaction. Bone was formed below the periosteum in all facial implants at 12 weeks and the BIC values were significantly different at both 8 and 12 weeks (p < 0.05). Ma, SLA, and PEKK facial implants are biocompatible with osseointegration properties. SLA can enhance osseointegration and provoke minimal soft tissue reactions, making them the most suitable choice. They provide an excellent environment for bone regeneration and, over the long term, may prevent atrophy caused by an aging mandible. The bone formation between the lateral surface of the facial implant and periosteum may assist in osseointegration and stabilization.

Keywords: CAD/CAM; PEKK; SLA; biocompatibility; bone defect; customized facial implant; implant; mandible; osseointegration; surface modification; titanium.