RNAi of Neuropeptide CCHamide-1 and Its Receptor Indicates Role in Feeding Behavior in the Pea Aphid, Acyrthosiphon pisum

Insects. 2024 Nov 28;15(12):939. doi: 10.3390/insects15120939.

Abstract

Neuropeptide CCHamide-1 (abbreviated as CCHa1) is a recently discovered peptide that is present in many arthropods and is the ligand of the CCHa1R, a member of the G protein-coupled receptors (GPCRs) superfamily, which plays a regulatory role in diverse physiological processes such as feeding, circadian rhythm, insulin production, lipid metabolism, growth, and reproduction. However, the function of this gene in aphids is still unknown. Here, we characterized and determined the potential role of CCHa1/CCHa1R signaling in the pea aphid, Acyrthosiphon pisum, which is a notorious pest in agriculture. The docking analysis revealed that the CCHa1 peptide binds to its receptor CCHa1R through specific amino acid residues, which are critical for maintaining the structural and functional integrity of the peptide-receptor complex. Quantitative real-time reverse transcription-PCR (qRT-PCR) revealed the expression levels of CCHa1/CCHa1R transcripts in different development stages and different tissues, indicating that the CCHa1 expression was high in the first nymphal instar compared to the upcoming nymphal instars and adults, and was predominantly high in the brain. The CCHa1/CCHa1R transcript levels were significantly upregulated in starved aphids compared to fed aphids. Moreover, RNAi knockdown by the injection of dsRNA-CCHa1 and dsRNA-CCHa1R significantly reduced the corresponding expression of the target gene and reduced their food intake in adult aphids, as revealed by the electrical penetration graph results. CCHa1/CCHa1R-silencing also reduced the reproduction, but not the survival, in A. pisum. Our data demonstrated that CCHa1/CCHa1R play a role in the regulation of feeding in A. pisum, suggesting a role of the CCHa1 signaling pathway in the aphids relating to their nutritional status.

Keywords: Acyrthosiphon pisum; CCHamide-1; feeding behavior; neuropeptide; parthenogenetic reproduction.