High temperatures represent a limitation for growth and development of many crop species. Several studies have demonstrated that the yield reduction of tomato under high temperatures and drought is mainly due to a photosynthetic decline. In this paper, a set of 15 tomato genotypes were screened for tolerance to elevated temperatures by cultivating plants under plastic walk-in tunnels. To assess the potential tolerance of tomato genotypes to high temperatures, measurements of chlorophyll fluorescence, pigments content and leaf functional traits have been carried out together with the evaluation of the final yields. Based on the greenhouse trials, a group of eight putative heat-sensitive and heat-tolerant tomato genotypes was selected for laboratory experiments aimed at investigating the effects of short-term high temperatures treatments in controlled conditions. The chlorophyll fluorescence induction kinetics were recorded on detached leaves treated for 60 min at 35 °C or at 45 °C. The last treatment significantly affected the photosystem II (PSII) photochemical efficiency (namely maximum PSII quantum efficiency, Fv/Fm, and quantum yield of PSII electron transport, ΦPSII) and the non-photochemical quenching (NPQ) in the majority of genotypes. The short-term heat shock treatments also led to significant differences in the shape of the slow Kautsky kinetics and its significant time points (chlorophyll fluorescence levels minimum O, peak P, semi-steady state S, maximum M, terminal steady state T) compared to the control, demonstrating heat shock-induced changes in PSII functionality. Genotypes potentially tolerant to high temperatures have been identified. Our findings support the idea that chlorophyll fluorescence parameters (i.e., ΦPSII or NPQ) and some leaf functional traits may be used as a tool to detect high temperatures-tolerant tomato cultivars.
Keywords: Solanum lycopersicum; chlorophyll a fluorescence; crop yield; heat stress; photosynthesis; tomato genotypes.