Deep multi-instance transfer learning for pneumothorax classification in chest X-ray images

Med Phys. 2022 Jan;49(1):231-243. doi: 10.1002/mp.15328. Epub 2021 Dec 7.

Abstract

Purpose: Pneumothorax is a life-threatening emergency that requires immediate treatment. Frontal-view chest X-ray images are typically used for pneumothorax detection in clinical practice. However, manual review of radiographs is time-consuming, labor-intensive, and highly dependent on the experience of radiologists, which may lead to misdiagnosis. Here, we aim to develop a reliable automatic classification method to assist radiologists in rapidly and accurately diagnosing pneumothorax in frontal chest radiographs.

Methods: A novel residual neural network (ResNet)-based two-stage deep-learning strategy is proposed for pneumothorax identification: local feature learning (LFL) followed by global multi-instance learning (GMIL). Most of the nonlesion regions in the images are removed for learning discriminative features. Two datasets are used for large-scale validation: a private dataset (27 955 frontal-view chest X-ray images) and a public dataset (the National Institutes of Health [NIH] ChestX-ray14; 112 120 frontal-view X-ray images). The model performance of the identification was evaluated using the accuracy, precision, recall, specificity, F1-score, receiver operating characteristic (ROC), and area under ROC curve (AUC). Fivefold cross-validation is conducted on the datasets, and then the mean and standard deviation of the above-mentioned metrics are calculated to assess the overall performance of the model.

Results: The experimental results demonstrate that the proposed learning strategy can achieve state-of-the-art performance on the NIH dataset with an accuracy, AUC, precision, recall, specificity, and F1-score of 94.4% ± 0.7%, 97.3% ± 0.5%, 94.2% ± 0.3%, 94.6% ± 1.5%, 94.2% ± 0.4%, and 94.4% ± 0.7%, respectively.

Conclusions: The experimental results demonstrate that our proposed CAD system is an efficient assistive tool in the identification of pneumothorax.

Keywords: X-ray images; computer-aided diagnosis; deep learning; pneumothorax; transfer learning.

MeSH terms

  • Deep Learning*
  • Humans
  • Pneumothorax* / diagnostic imaging
  • Retrospective Studies
  • Thorax
  • X-Rays