An isolate of Aureobasidium pullulans (strain = CG163) and the plant defence elicitor acibenzolar-S-methyl (ASM) were investigated for their ability to control leaf spot in kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 (Psa). Clonal Actinidia chinensis var. deliciosa plantlets ('Hayward') were treated with ASM, CG163 or ASM + CG163 at seven and one day before inoculation with Psa. ASM (0.2 g/L) was applied either as a root or foliar treatments and CG163 was applied as a foliar spray containing 2 × 107 CFU/mL. Leaf spot incidence was significantly reduced by all treatments compared with the control. The combination of ASM + CG163 had greater efficacy (75%) than either ASM (55%) or CG163 (40%) alone. Moreover, treatment efficacy correlated positively with the expression of defence-related genes: pathogenesis-related protein 1 (PR1), β-1,3-glucosidase, Glucan endo 1,3-β-glucosidase (Gluc_PrimerH) and Class IV chitinase (ClassIV_Chit), with greater gene upregulation in plants treated with ASM + CG163 than by the individual treatments. Pathogen population studies indicated that CG163 had significant suppressive activity against epiphytic populations of Psa. Endophytic populations were reduced by ASM + CG163 but not by the individual treatments, and by 96-144 h after inoculation were significantly lower than the control. Together these data suggest that ASM + CG163 have complementary modes of action that contribute to greater control of leaf spotting than either treatment alone.
Keywords: Actinidia chinensis; Aureobasidium pullulans; Pseudomonas syringae pv. actinidiae; acibenzolar-S-methyl; biocontrol; induced resistance; kiwifruit defence; priming.