Cubosomes: The Next Generation of Smart Lipid Nanoparticles?

Angew Chem Int Ed Engl. 2019 Mar 4;58(10):2958-2978. doi: 10.1002/anie.201804067. Epub 2018 Sep 26.

Abstract

Cubosomes are highly stable nanoparticles formed from the lipid cubic phase and stabilized by a polymer based outer corona. Bicontinuous lipid cubic phases consist of a single lipid bilayer that forms a continuous periodic membrane lattice structure with pores formed by two interwoven water channels. Cubosome composition can be tuned to engineer pore sizes or include bioactive lipids, the polymer outer corona can be used for targeting and they are highly stable under physiological conditions. Compared to liposomes, the structure provides a significantly higher membrane surface area for loading of membrane proteins and small drug molecules. Owing to recent advances, they can be engineered in vitro in both bulk and nanoparticle formats with applications including drug delivery, membrane bioreactors, artificial cells, and biosensors. This review outlines recent advances in cubosome technology enabling their application and provides guidelines for the rational design of new systems for biomedical applications.

Keywords: cubosomes; drug delivery; lipids; nanoparticles; self-assembly.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't