Although recent studies support significant differences in intrinsic structure, function, and connectivity along the longitudinal axis of the hippocampus, few studies have investigated the normative development of this dimension. In addition, factors known to influence hippocampal structure, such as sex or puberty, have yet to be characterized when assessing age-related effects on its subregions. This study addresses this gap by investigating the relationship of the anterior (antHC) and posterior (postHC) hippocampus volumes with age, and how these are moderated by sex or puberty, in structural magnetic resonance imaging scans from 183 typically developing participants aged 6-21 years. Based on previous literature, we first anticipated that non-linear models would best represent the relationship between age and the antHC and postHC volumes. We found that age-related effects are region-specific, such that the antHC volume remains stable with increasing age, while the postHC shows a cubic function characterized by overall volume increase with age but a slower rate during adolescence. Second, we hypothesized that models, which include biological sex or pubertal status would best describe these relationships. Contrary to expectation, models comprising either biological sex or pubertal status did not significantly improve model performance. Further longitudinal research is needed to evaluate their effects on the antHC and postHC development.
Keywords: adolescence; development; gray matter; hippocampus; puberty.
© 2022 Wiley Periodicals LLC.