Mitotic cells face the challenging tasks of linking kinetochores to growing and shortening microtubules and actively regulating these dynamic attachments to produce accurate chromosome segregation. We report here that Ndc80/Hec1 functions in regulating kinetochore microtubule plus-end dynamics and attachment stability. Microinjection of an antibody to the N terminus of Hec1 suppresses both microtubule detachment and microtubule plus-end polymerization and depolymerization at kinetochores of PtK1 cells. Centromeres become hyperstretched, kinetochore fibers shorten from spindle poles, kinetochore microtubule attachment errors increase, and chromosomes severely mis-segregate. The N terminus of Hec1 is phosphorylated by Aurora B kinase in vitro, and cells expressing N-terminal nonphosphorylatable mutants of Hec1 exhibit an increase in merotelic attachments, hyperstretching of centromeres, and errors in chromosome segregation. These findings reveal a key role for the Hec1 N terminus in controlling dynamic behavior of kinetochore microtubules.