Sensitive, High-Speed, and Broadband Perovskite Photodetectors with Built-In TiO2 Metalenses

Small. 2021 Oct;17(41):e2102694. doi: 10.1002/smll.202102694. Epub 2021 Sep 12.

Abstract

Monolithic integration of nanostructured metalenses with broadband light transmission and good charge transport can simultaneously enhance the sensitivity, speed, and efficiency of photodetectors. The realization of built-in broadband metalenses in perovskite photodetectors, however, has been largely challenged by the limited choice of materials and the difficulty in nanofabrication. Here a new type of broadband-transmitting built-in TiO2 metalens (meta-TiO2 ) is devised, which is readily fabricated by one-step and lithograph-free glancing angle deposition. The meta-TiO2 , which comprises of sub-100 nm TiO2 nanopillars randomly spaced with a wide range of sub-wavelength distances in 5-200 nm, shows high transmittance of light in the wavelength range of 400-800 nm. The meta-TiO2 also serves as an efficient electron transporting layer to prevent the exciton recombination and facilitate the photoinduced electron extraction and transport. Replacing the conventional mesoporous TiO2 with the meta-TiO2 comprehensively leads to enhancing the detection speed by three orders of magnitude to a few hundred nanoseconds, improving the responsivity and detectivity by one order of magnitude to 0.5 A W-1 and 1013 Jones, respectively, and extending the linear dynamic range by 50% to 120 dB.

Keywords: TiO 2; glancing angle deposition; metalens; perovskite; photodetectors.