Chronic hypoxia (CH) causes pulmonary vasoconstriction because of increased pulmonary arterial smooth muscle cell (PASMC) contraction and proliferation. We previously demonstrated that intracellular Ca(2+) concentration ([Ca(2+)](i)) was elevated in PASMCs from chronically hypoxic rats because of Ca(2+) influx through pathways other than L-type Ca(2+) channels and that development of hypoxic pulmonary hypertension required full expression of the transcription factor hypoxia inducible factor 1 (HIF-1). In this study, we examined the effect of CH on the activity and expression of store-operated Ca(2+) channels (SOCCs) and the regulation of these channels by HIF-1. Capacitative Ca(2+) entry (CCE) was enhanced in PASMCs from intrapulmonary arteries of rats exposed to CH (10% O(2); 21 days), and exposure to Ca(2+)-free extracellular solution or SOCC antagonists (SKF96365 or NiCl(2)) decreased resting [Ca(2+)](i) in these cells. Expression of TRPC1 and TRPC6, but not TRPC4, mRNA and protein was increased in PASMCs from rats and wild-type mice exposed to CH, in PASMCs from normoxic animals cultured under hypoxic conditions (4% O(2); 60 hours), and in PASMCs in which HIF-1 was overexpressed under nonhypoxic conditions. Hypoxia-induced increases in basal [Ca(2+)](i) and TRPC expression were absent in mice partially deficient for HIF-1. These results suggest that increased TRPC expression, leading to enhanced CCE through SOCCs, may contribute to hypoxic pulmonary hypertension by facilitating Ca(2+) influx and increasing basal [Ca(2+)](i) in PASMCs and that this response is mediated by HIF-1.