Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Results by year

Table representation of search results timeline featuring number of search results per year.

Year Number of Results
2019 2
2020 2
2021 1
2022 3
2023 1
2025 0

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

8 results

Results by year

Filters applied: . Clear all
Page 1
Federated Learning for Multicenter Collaboration in Ophthalmology: Improving Classification Performance in Retinopathy of Prematurity.
Lu C, Hanif A, Singh P, Chang K, Coyner AS, Brown JM, Ostmo S, Chan RVP, Rubin D, Chiang MF, Campbell JP, Kalpathy-Cramer J; Imaging and Informatics in Retinopathy of Prematurity Consortium Members of the Imaging and Informatics in Retinopathy of Prematurity research consortium are as follows. Lu C, et al. Ophthalmol Retina. 2022 Aug;6(8):657-663. doi: 10.1016/j.oret.2022.02.015. Epub 2022 Mar 14. Ophthalmol Retina. 2022. PMID: 35296449
Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis.
Coyner AS, Chen JS, Chang K, Singh P, Ostmo S, Chan RVP, Chiang MF, Kalpathy-Cramer J, Campbell JP; Imaging and Informatics in Retinopathy of Prematurity Consortium. Coyner AS, et al. Ophthalmol Sci. 2022 Feb 11;2(2):100126. doi: 10.1016/j.xops.2022.100126. eCollection 2022 Jun. Ophthalmol Sci. 2022. PMID: 36249693 Free PMC article.
Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning.
Taylor S, Brown JM, Gupta K, Campbell JP, Ostmo S, Chan RVP, Dy J, Erdogmus D, Ioannidis S, Kim SJ, Kalpathy-Cramer J, Chiang MF; Imaging and Informatics in Retinopathy of Prematurity Consortium. Taylor S, et al. JAMA Ophthalmol. 2019 Sep 1;137(9):1022-1028. doi: 10.1001/jamaophthalmol.2019.2433. JAMA Ophthalmol. 2019. PMID: 31268518 Free PMC article.
Federated Learning for Multicenter Collaboration in Ophthalmology: Implications for Clinical Diagnosis and Disease Epidemiology.
Hanif A, Lu C, Chang K, Singh P, Coyner AS, Brown JM, Ostmo S, Chan RVP, Rubin D, Chiang MF, Kalpathy-Cramer J, Campbell JP; Imaging and Informatics in Retinopathy of Prematurity Consortium. Hanif A, et al. Ophthalmol Retina. 2022 Aug;6(8):650-656. doi: 10.1016/j.oret.2022.03.005. Epub 2022 Mar 16. Ophthalmol Retina. 2022. PMID: 35304305 Free PMC article.
A Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning to Monitor Disease Regression After Treatment.
Gupta K, Campbell JP, Taylor S, Brown JM, Ostmo S, Chan RVP, Dy J, Erdogmus D, Ioannidis S, Kalpathy-Cramer J, Kim SJ, Chiang MF; Imaging and Informatics in Retinopathy of Prematurity Consortium. Gupta K, et al. JAMA Ophthalmol. 2019 Sep 1;137(9):1029-1036. doi: 10.1001/jamaophthalmol.2019.2442. JAMA Ophthalmol. 2019. PMID: 31268499 Free PMC article.