PRMT5/WDR77 Enhances the Proliferation of Squamous Cell Carcinoma via the ΔNp63α-p21 Axis

Cancers (Basel). 2024 Nov 11;16(22):3789. doi: 10.3390/cancers16223789.

Abstract

Protein arginine methyltransferase 5 (PRMT5) is a critical oncogenic factor in various cancers, and its inhibition has shown promise in suppressing tumor growth. However, the role of PRMT5 in squamous cell carcinoma (SCC) remains largely unexplored. In this study, we analyzed SCC patient data from The Cancer Genome Atlas (TCGA) and the Cancer Dependency Map (DepMap) to investigate the relationship between PRMT5 and SCC proliferation. We employed competition-based cell proliferation assays, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, flow cytometry, and in vivo mouse modeling to examine the regulatory roles of PRMT5 and its binding partner WDR77 (WD repeat domain 77). We identified downstream targets, including the p63 isoform ΔNp63α and the cyclin-dependent kinase inhibitor p21, through single-cell RNA-seq, RT-qPCR, and Western blot analyses. Our findings demonstrate that upregulation of PRMT5 and WDR77 correlates with the poor survival of head and neck squamous cell carcinoma (HNSCC) patients. PRMT5/WDR77 regulates the HNSCC-specific transcriptome and facilitates SCC proliferation by promoting cell cycle progression. The PRMT5 and WDR77 stabilize the ΔNp63α Protein, which in turn, inhibits p21. Moreover, depletion of PRMT5 and WDR77 repress SCC in vivo. This study reveals for the first time that PRMT5 and WDR77 synergize to promote SCC proliferation via the ΔNp63α-p21 axis, highlighting a novel therapeutic target for SCC.

Keywords: PRMT5; WDR77; cell proliferation; p21; squamous cell carcinoma; ΔNp63α.