The impact of partial and full COVID lockdowns in 2020 on vehicle miles traveled (VMT) in Kuwait was estimated using data extracted from the Directions API of Google Maps and a Python script running as a cronjob. This approach was validated by comparing the predictions based on the app to measuring traffic flows for 1 week across four road segments considered in this study. VMT during lockdown periods were compared to VMT for the same calendar weeks before the pandemic. NOx emissions were estimated based on VMT and were used to simulate the spatial patterns of NOx concentrations using an air quality model (AERMOD). Compared to pre-pandemic periods, VMT was reduced by up to 25.5% and 42.6% during the 2-week partial and full lockdown episodes, respectively. The largest reduction in the traffic flow rate occurred during the middle of these 2-week periods, when the traffic flow rate decreased by 35% and 49% during the partial and full lockdown periods, respectively. The AERMOD simulation results predicted a reduction in the average maximum concentration of emissions directly related to VMT across the region by up to 38%, with the maximum concentration shifting to less populous residential areas as a result of the lockdown.
Keywords: Air quality; COVID-19 lockdown; Dispersion modeling; Transportation emission; Urban road traffic.
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.