It is well established that programmed cell death claims up to two-thirds of the oocytes produced during gametogenesis in the developing fetal ovaries. However, the mechanisms underlying prenatal germ cell loss in females remain poorly understood. Herein we report that caspase-11 null female mice are born with a reduced number of oocyte-containing primordial follicles. This phenotype is likely due to failed cytokine processing known to occur in caspase-11 mutants since neonatal female mice lacking both interleukin (IL)-1alpha and IL-1beta also exhibit a reduced endowment of primordial follicles. In addition, germ cell death in wild-type fetal ovaries cultured ex vivo is suppressed by either cytokine, likely via ligand activation of type 1 IL-1 receptors expressed in fetal germ cells. Normal oocyte endowment can be restored in caspase-11 null female mice by simultaneous inactivation of the gene encoding the cell death executioner enzyme, caspase-2. However, caspase-2 deficiency cannot overcome gametogenic failure resulting from meiotic recombination defects in ataxia telangiectasia-mutated (Atm) null female mice. Thus, genetically distinct mechanisms exist for developmental deletion of oocytes via programmed cell death, one of which probably functions as a meiotic quality-control checkpoint that cannot be overridden.