Lycopene is a carotenoid widely used for its dominant antioxidant properties and beneficial health effects. Silver nanoparticles (AgNP) have gained attention for use in many medicinal and consumer products, leading to animal, human, and environmental exposure. This study investigated the dose-dependent effects of lycopene on AgNP-induced hepatotoxicity in albino mice. The four experimental groups, comprising eight albino mice each, were as follows: Group I, vehicle control (C); Group II, AgNP-treated (5 mg/kg/day) (AgNP); Group III, AgNP/lycopene-treated (5 + 10 mg/kg/day) (AgNP + LP10); and Group IV, AgNP/lycopene-treated (5 + 100 mg/kg/day) (AgNP + LP100). All solutions were orally administered to the mice once in a day for consecutive 14 days. The levels of serum aspartate transaminase, alanine transaminase, alkaline phosphatase, and total bilirubin were significantly higher in the AgNP-treated group than in the control group but significantly lower in the AgNP + LP100 group than in the AgNP-treated group. A significant decrease in reduced glutathione level and superoxide dismutase activity and an increase in lipid peroxidation were observed in the AgNP-treated group; these were significantly suppressed in the AgNP+LP100 as compared to AgNP-treated group. Histopathological examination showed substantial morphological alterations in hepatic tissues in the AgNP, which were adequately improved in the low and high dose lycopene-treated groups. The dose of 100 mg/kg/day of lycopene was more effective than 10 mg/kg/day, as pretreatment with high dose lycopene significantly diminished the adverse changes occurred due to AgNP in liver weight, hepatic architecture, serum functional markers, and antioxidant markers. Thus, present study shows that pretreatment with lycopene offers protection against AgNP-induced hepatotoxicity and oxidative stress.
Keywords: antioxidant; hepatotoxicity; in vivo toxicity of silver nanoparticles; lycopene; serum hepatic markers.
© 2023 Wiley Periodicals LLC.