Analysis of Advanced Driver-Assistance Systems for Safe and Comfortable Driving of Motor Vehicles

Sensors (Basel). 2024 Sep 26;24(19):6223. doi: 10.3390/s24196223.

Abstract

This paper aims to thoroughly examine and compare advanced driver-assistance systems (ADASs) in the context of their impact on safety and driving comfort. It also sought to determine the level of acceptance and trust drivers have in these systems. The first chapter of this document describes the sensory detectors used in ADASs, including radars, cameras, LiDAR, and ultrasonics. The subsequent chapter presents the most popular driver assistance systems, including adaptive cruise control (ACC), blind spot detection (BSD), lane keeping systems (LDW/LKS), intelligent headlamp control (IHC), and emergency brake assist (EBA). A key element of this work is the evaluation of the effectiveness of these systems in terms of safety and driving comfort, employing a survey conducted among drivers. Data analysis illustrates how these systems are perceived and identified areas requiring improvements. Overall, the paper shows drivers' positive reception of ADASs, with most respondents confirming that these technologies increase their sense of safety and driving comfort. These systems prove to be particularly helpful in avoiding accidents and hazardous situations. However, there is a need for their further development, especially in terms of increasing their precision, reducing false alarms, and improving the user interface. ADASs significantly contribute to enhancing safety and driving comfort. Yet, they are still in development and require continuous optimization and driver education to fully harness their potential. Technological advancements are expected to make these systems even more effective and user-friendly.

Keywords: advanced driver-assistance systems; autonomous transport; safety of transport; transportation.