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ABSTRACT

Title of Thesis: CONSTRAINT GENERATION AND REASONING IN OWL
THOMAS H. BRIGGS, DOCTORATE OF PHILOSOPHY, 2008

Thesis directed by: Dr. Yun Peng, Professor
Department of Computer Science and
Electrical Engineering

The majority of OWL ontologies in the emerging Semantic Webapnstructed from
properties that lack domain and range constraints. Canttria OWL are different from
the familiar uses in programming languages and databas@ésra actually type assertions
that are made about the individuals which are connectedépribperty. These assertions
can add vital information to the model because they are @@sgof type on the individ-
uals involved; and they can also give information on how teénihg property may be
used. Three different automated generation techniquesxgtered in this research: dis-
junction, least-common named subsumer, and vivificati@chEalgorithm is compared for
the ability to generalize, and the performance impacts mgipect to the reasoner. A large
sample of ontologies from the Swoogle repository are usewmnopare real-world perfor-
mance of these techniques. Finally, using generated fatype of default reasoning, may
conflict with future assertions to the knowledge base. Wideeral default reasoning is
non-monotonic and undecidable a novel approach is intredita support efficient retrac-
tion of the default knowledge. Combined, these technigmeble a robust and efficient
generation of domain and range constraints which will tesulnference of additional

facts and improved performance for a number of Semantic \fphcations.
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Chapter 1

INTRODUCTION

The Semantic Web is an evolving set of technologies used iighudata to enable
intelligent agents. One major step in the development ofuhae Semantic Web must be
a set of enabling technologies that will ease the transitiom data to knowledge. This
research explores one frequently overlooked aspect ofrdmsition: property constraints.
This chapter provides an introduction to the issues and arvieaw of the proposed so-
lutions. The chapter is organized as follows: a descriptbithe problem appears in
Section 1.1, the formal thesis statement appears in Setttynand an overview of the

dissertation outline appears in Section 1.3.

1.1 Problem Description

The Semantic Web languages, such as OWL, allow encoding rgiaghiaation of do-
main specific knowledge in ontologies in order to supportigfit reasoning processes.
A domain is described with a collection of classes, propsrtand individual definitions.
Classes describe groups of individuals and define thear@itor membership. Properties
describe relationships between individuals and betwedimiduals and simple data values.
Individuals describe specific instances of classes thrasgertions of class membership

and properties. The terminological and assertional detsen contained in the ontology is



2
expected to be neither complete nor minimal. The reasongsdd as a tool to infer the
missing information.

One specific area that is problematic for ontology develapnsethe role of property
domain and range constraints. In OWL, a constraint spectifeet/pes of individuals which
fill a particular property. These constraints are not intetgd as restrictions about which
individuals can be used with a property, rather they senasasrtions about the types of
individuals connected by the property. There is valuablermation that can be inferred
from domain and range constraints.

In many cases, constraints are not specified by ontologylaje»es. The result of
unspecified constraints are vague semantics for that gsopad the individuals that it
connects. This work explores several reasons for this aovdes techniques to construct

constraints from the ontology.

1.1.1 Domain and Range Constraints in OWL

There are some subtleties to the current revision of OWL &iniplementation of
domain and range constraint definition and use. There age thain pitfalls when using
domain and range constrains in OWL: the default domain angaa@reowl : Thing, the
problematic interpretation of constraints between tradal programming languages and
OWL,; and the lack of specific mapping from a domain to a ranges.

When an OWL property’s domain or range is left blank it defatb be the concept
owl : Thing, which is equivalent to the Description Logic concept tap and is a concept
that represents everything. This says very little abouttwyy@es of individuals that are
related to a property. These individuals are already a getteng and this assertion does
not add any information. This results in a potential lossrdbiimation if there are no
other statements to stand in for the missing constraintss dlso results in looser set of

semantics to check for inconsistencies in the fillers of gerty.
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For example, we may see an assertion that individuaCE PROP BOB. If this is
the only information we have about these individuals thenkwew nothing else about
ALICE or BOB, except that they are aswl : Thing and are connected through property
PROP. Without knowledge of the domain being modeled (and depwndn the names of
the symbols used here), these are not very meaningful sermant

Domain and range constraints are interpreted differentQWVL than they are in other
traditional database and programming languages. In thad#idonal languages, when a
method is restricted to allow only certain types of valulesntany invocation of that method
will check the types to see that they match and throw an efribrely do not. In OWL,
when an individual fills the slots of a property (either asjsabor object) that individual
is asserted to be of a type of the domain or range. The digimig subtle. In traditional
languages, domain and range statements describe a restactthe valid types that may be
used. In Description Logics, these statements are assedlmout the type of the individual
that are connected.

These differences cause real problems for users familidrtve traditional database
and programming systems transitioning to OWL and other Basan Logics. They will
need to address the difference in interpretation of domamsranges to avoid creating
semantic errors in their knowledge bases (SWAD-Europe RFa8 example, suppose the
propertydrivesCar is described as having a dom&erson and range o€ar. Later, the
assertion thatELLOW is aColor, andYELLOW drivesCar HONDA is added to the knowledge
base. In a traditional language this would cause an exaefitki.LOW is aColor, not a
Person). In the Description Logic case, the reasoner will m&keLOW a Person unless
there is some assertion that prevents this situation.

In the current 1.0 version of OWL, domain and range condsane specified as a
collection of statements and cannot be paired with eachr.other example, OWL 1.0

cannot describe that propemysRank has a range ofirmyRanks when the domain is
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Soldier, andNavyRanks when the domain iSeaman. Modeling this situation requires
one of two choices. The domain bisRank could beSeaman U Soldiers, and the range
could beArmyRanks U NavyRanks. The other option is to split the thexsRank property
into hasNavyRank andhasArmyRank. Neither of these options faithfully expresses the

same concept as the original concept.

1.1.2 OWL in the Wild

The theoretical interpretations and implications of damend range constraints are
clear and well studied (World Wide Web Consortium 2005b).wieer, in practice, the
way OWL domain and range constraints are actually being bgexhtology developers is
surprising. A survey of over 200,000 semantic web documsesitieved by the Swoogle
semantic web crawler showed that nearly 75% of the objeqepties were defined without
property constraints (see Section 6.1).

There are many reasons why these properties are not cowstrdtirst, the informa-
tion may not have been known to the ontology developer. Famgie, if the ontology
were developed incrementally, the property may be definéord¢he classes that make
up the domain and range. Second, the lack of constraints ey Ibeen an artifact of
the ontology generation processes used to construct théedocuments. For example,
suppose an ontology generator is used to automaticallglagndata from a non-semantic
source. The ontology generator found evidence of a role iouhak find evidence of any
valid constraints. Other reasons could include: missifgrimation, user error, or incom-
plete specification of the property itself. In some casespitld be the intention of the
ontology author that a particular property does not havenatcaint.

Given an ontology containing a property with an unconsedidomain or range, is
there a way to determine whether the property should have t@estrained to something

more specific thawowl : Thing? The answer depends on the assumptions made about the
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universe being described. The Open World Assumption stiatsvhat is not stated cannot
be assumed to be true or false - it is unknown. The lack of a doorarange constraint
neither implies that a property is really unconstrainalie does it imply that there is
some constraint that is not known. This is a very unsatisfgqiosition. Without external
domain knowledge, an examination of an ontology cannotraete whether the lack of a

constraint is intentional or not, or even if the constraeiist or not.

1.1.3 Generating Domains

The way properties are used can provide hints about whichadoand range con-
straints could apply. This work proposes three differectitéques to generate domain and

range constraints:
¢ Disjunction,
e Least Common Named Subsumer,
¢ Vivification.

These constraint generation algorithms share a methodlletting evidence for the do-
main and range constraints for a property. First, the ligbroperties in the ontology is
computed. For each properyin the list, each class definition in the ontology is evaldate
to determine if it contains a restriction involving the peoty P. If it does, then the defined
class is added to the domain Bfand the restricted class definition is added to the range of
P. Each of the generation algorithms use a different methadtstruct the final domain
and range constraints fét. The disjunction method computes the least specific subsume
of the set of classes in the domain and range. The least comamed subsumer computes
the least specific named concept that subsumes all of the ierthe constraint list. The

vivification algorithm computes a heuristic guided sumnfrithe concept list.
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A domain or range constraint can be computed from the sourt®#agy with any of
these three methods. Using the computed domain and ranigmstats can add previously
unstated information to an ontology. The problem is thahesHdhese approaches creates
different semantics for the generated domain and rangdreimts. These differences have
an impact on the quality of the resulting reasoning and ompérormance of the reasoner.

Another additional difficulty with this approach is detemmg whether the computed
domain and range constraints match the intentions of thelagy’'s authors. Therefore,
there needs to be a way to manage the derivation of new factstfre knowledge base and
to efficiently retract information from the knowledge baSkier assertions clash with the

generated domain and range.

1.1.4 Default Reasoning

Default reasoning is a form of non-monotonic reasoning, ick facts are known by
default or are assumed due to a lack of information to theraontin this line of research,
the domain and range constraints are computed and usedrgetb@ning process as if they
were assertions made by the author. After those constraiatsomputed, information is
subsequently entered into the knowledge base. These statieare the result of default
rules and may clash with current or future facts causing timwvkedge base to become
inconsistent. In order to correct the inconsistency, timewust be a way to distinguish be-
tween facts that were asserted, default, or inferred. linthensistency is caused by facts
that were either default facts or inferred from default $aitten which should be removed
from the knowledge base. This is a form of default reasoning.

Most default reasoning is undecidable. In an undecidalglie |there are well-formed
valid formulae that cannot be proven to be correct. A simpiategy to avoid undecid-
ability while supporting very limited default reasoninglMbe described. The strategy

will consist of two principle parts: tracking the derivatiof facts and supporting contrac-
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tion. The inference rules will be modified to handle the pnegeof default rules and will

propagate the origin of a statement in the database thrineghfierence process. The con-
sistency criteria of the reasoner will be modified to hantike ¢ase of inconsistency due
to default facts. When a default statement causes the irstensy a contraction operation

will remove the necessary facts to restore the knowledge tues valid state.

1.1.5 Summary

Although domain and range constraints are important asasnvhen developing an
ontology, they are frequently overlooked. Because of tthisre is a great deal of latent
information in an ontology that cannot be inferred by thesocaeer. Generating default do-
main and range constraints can help restore this informa@onstruction of an algorithm
to do this will help maintain reasoner performance and marthg size of the knowl-
edge base. Default assertions can lead to problems withtmicidy which are addressed
through tracking whether a fact is asserted by the ontolagiyca or default. Modifying
the reasoner’s inference rules to use this tracking inftonaan lead to an efficient form

of default logic with contraction while preserving coneisty and decidability.

1.2 Thesis Statement

The purpose of this research is to investigate methods faergéing domain and range
constraints from its defining ontology and to evaluate thaliguof this generation. This
work will also investigate the default reasoning necessapupport generated constraints.
A specific focus will be on management of the default facth@knowledge base including
tracking default facts and efficient retraction operatitmngestore consistency.

The expected outcome of this research is an algorithmiceveork to generate and

evaluate domain and range constraints. Another outconmeusd this algorithm to com-
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pare the generated constraints against the assertedaiotssin existing ontologies to as-
sess the subsumption relationships between them. A thii@bme is an inference pro-
cedure that will enable limited default reasoning to be ddaethe existing OWL infer-
ence rules to support these operations while maintainiagctimpleteness, correctness,
and complexity results for traditional OWL reasoning tasks

The intended audience for this research includes ontoleggldpers, especially those
developing large ontologies where these rules can be usestratively improve their on-
tologies by generating constraints and using those contst@s guidance for asserted con-
straints. Another audience will be researchers using mébion extraction to generate
ontologies from non-semantic sources where specific doararange information is not
readily available. One final audience for this researchuithes those interested in ontology
integration where presence of concise and meaningful doaral range constraints may

help identify overlapping concepts between two ontolagies

1.3 Dissertation Outline

The remainder of this document is organized as follows. @hap provides an in-
troduction to Knowledge Representation and Descriptiogit® Chapter 3 introduces the
semantic web language OWL. Chapter 4 describes domain auge i@nstraint genera-
tion algorithms and their implementation. Chapter 5 déssithe modifications of OWL
inference rules to support limited default reasoning. @wap provides results demon-
strating the performance of experiment. Finally, ChaptproXides a final discussion and

suggestions for future research.



Chapter 2

DESCRIPTION LOGICS

Knowledge representation is the field of Artificial Inteigce that focuses on the
design of systems that are capable of expressing knowleligét @ particular domain.
Reasoning is concerned with the creating systems that\disc@w information through
an inference process. Together, knowledge representaitbreasoning are two of the most
crucial issues in the development of intelligent systemsprBsenting human knowledge
and using it to solve problems has been at the heart of thédfatilntelligence field since
its beginnings with the Dartmouth Conference (McCarthyl. 1955) where the original
researchers were interested in how a ‘tomputer can be programmed to use a language.”
Generally, there are two parts of this problem: how to regmmeknowledge and how to use
that knowledge to reason about the state of the world.

There are numerous approaches to solving this problem. &ppreaches are based
on crisp logics with well defined semantics using first-ordgiic. First-order logic pro-
vides clear semantics and sound inference mechanism&ndysf this type include PRO-
LOG, Otter, and SPASS, (Colmerauer 1993), (Mccune & Wos ], 99%eidenbactet al.
2002). Other approaches include probabilistic approachbese systems frequently use
Bayesian reasoning to extend the semantics of the reasmhantlle uncertainty. Systems

of this type include Bayesian Networks (Pearl 1988), Praissilc Logic, (Nilsson 1986),
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P-CLASSIC (Koller, Levy, & Pfeffer 1997) and BayesOWL (Di2§05).

Description Logics are a branch of crisp logics that are amnegoemployed in the con-
struction of the Semantic Web with the definition of standandjuages such &M_+0O L
and OWL (Section 3.2.2). Description Logics were selecte@fnumber of reasons. First,
they have a long history dating back to the frames systemiseil®70s (Baader & Nutt
2003). Second, they include well-researched and artiedill#nguages such as KAON2
(Motik ). Third, they provide clear semantics in the defmitiof classes, property rela-
tionships between individuals, and type assertions oretiradividuals. Fourth, there are
existing web applications based on DL suchUasr ANGLE and FI NDUR; and the exis-
tence of DL languages designed for the web such as OIL (HkstddcGuiness, & Welty
2003). Finally, there are also a rich set of reasoners, ssidPeliet and FACT (Parsia &
Sirin 2004), (Horrocks 1999). The combination of expresdogic with clear semantics
and efficient reasoning make Description Logics well suitedheir work in the emerging
Semantic Web.

This chapter includes an introduction to Description Legio Section 2.1, an
overview of types of Description Logics in Section 2.2, ahd structure of a Descrip-
tion Logic knowledge base in Section 2.3. An overview of th@soning process and types
of tasks supported by a reasoner are discussed in Sectibas@®2.5. Finally, an overview

of Default Logics is discussed in Section 2.6.

2.1 Description Logics

Description Logics evolved from prior work in Semantic Nated Frame based sys-
tems. The prior systems provided mechanisms to represegetierality or specificity of a
particular domain through IS-A links; but they typicallycked the ability to express other

types of relations. In comparison, Description Logicswliouch more general expressions
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of relations between concepts (Nardi & Brachman 2003).

2.1.1 Overview

Description Logics are built from a set of classes (congepétationships (roles or
properties), and instances (individuals). Atomic conseptd roles are used to represent
some principle concept in the domain or a binary relatignletween them. More com-
plex terms are built using operators suchimtgrsection union, complementandvalue
restrictionsthat combine atomic and complex terms together to define hesgees. Fig-
ure 2.1 shows an example of a pair of concept description®saription Logic. The two
definitions use the intersection operator to combine eégsiitomic classes to create new
complex classes. The first represents the intersecti®esion andProfessor and repre-
sents all people who are professors. The second exampleslefitiass where everyone is

aPerson and notMale and areParent, which describes the concept of a mother.

Person M Male
Person M —Male 1 Parent

FIG. 2.1. DL Example

Description Logics are a subset of First Order Logics (FQUiRe FOL, there is no
inherent semantic meaning in the names of the symbols. Theeotion is to select a
symbol whose name bears some relation to the concept its&mie In Figure 2.1, the
symbolPerson can represent anything. It is a recommended practice totsgss names
that reflect the meaning of what they represent.

Changing the name of the symbol does nothing to change ttiedfthe relationships

between them. In the example of Figure 2.1, the syniasbon could just as easily be
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named some randomly generated name, sudBEI$3233. The semantic interpretation
would be unaffected by this change. The semantic interjoets defined by the organiza-
tion of the classes and the relationships that connect thgather. These relationships are
used to make inferences about new relationships betweettas® definitions and to infer
type assertions for individuals in the knowledge base. A plisomorphic graphics with
different symbol names have identical semantics. The spomrdence between symbol
names and what they represent is primarily a tool to makesieeéor human knowledge

workers to maintain the knowledge base (Nardi & Brachmar8200

2.1.2 Parts of a Description Logic

Classes (concepts) can be atomic, consisting of a singte t@r can be be defined
as a set of value restrictions involving other concepts @stoAtomic classes are usually
implicitly defined merely by referencing them in other clakinitions or through type
assertions. More complex classes can be created througghd=finition constructors.

Individuals are specific instances of classes. Individigglgesent specific instances of
some set of classes. Suppose there is a €lasshat describes all cars, then an individual
YellowCar represents a specific car. Each individual may have a nunfilbass assertions
that describe different aspects of the individual. For epl@mthe individualYellowCar
could be a member of the cla€ar and the classohnsThings, the collection of things
owned by John.

Properties are used to define relationships between ingilgdor between an indi-
vidual an literal data such as a string or a number. A roleriesehas an individual that
is a subject and another that is the object. These indivedara often called fillers. The
property assertion acts as the predicate that ties thecubjéhe object. Together prop-
erties and individuals define the semantic structure of aipenstance of a knowledge

base (Nardi & Brachman 2003). For example, a propkagDoors could connect the
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individual YellowCar to the valuet.

Different Description Logics may further extend the basiogerty constructor with
additional definitions. One common set of extensions irelddmain and range con-
straints. Another common extension is a statement that@epohas an inverse property.
Properties can also be identified as being transitive, symenand functional (Nardi &

Brachman 2003).

Domain and Range Constraints Domain and range constraints are of particular
interest to this research. The domain and range constasstst the types of the fillers of
a property. The subject filler is asserted to be a member ofltes of the domain, and
the object filler is asserted to be a member of the range. Bai®ticonstraints is different
than in other applications, such as databases, where thaidl@amd range constraints are
interpreted as restrictions on the types of values thaivalitto be used with that property.

For example, using traditional Object-Oriented Prograngii@nguages such as Java
or C++, a function may be declared to accept an object of €as$s essence, the domain
of this function isC. Calling the function with an object of any class that is Gobr one
of its sub-classes will result in either a compilation emoia run-time type exception. If
the instance is a sub-class©f it will be type-cast to typ& and will, temporarily, lose all
essence that is not part of claSs

The Description Logic interpretation of domain and rangest@ints is that they are
sufficient conditions to add a type definition to the subjeablgect individuals that fill a
property role assertion. Thus, for some property that hasnaath of typeC, any subject
of that property becomes a member of the claser the ontology becomes inconsistent if

that causes a class with other assertions.
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Other Constructors Most Description Logics provide two class definitions con-
structors, a subclass constructar, and an equivalence constructer, The difference is
in the interpretation of the relationships. The subclasstactor defines an inheritance
relationship between the super- and sub-classes. Thelashioherits the properties of
the super-class and any instance of the sub-class netgbsarthe properties of the super-
class. The equivalence relationship is a stronger aseeatiol describes necessary and
sufficient criteria for the two classes. In effect, it is stifint to know that an individual is
a member of one class to know that it is a member of the othss @a well.

Classes are also constructed using restrictions. Reésitscare descriptions of sets
of individuals that meet the criteria of the restriction. f@mon restriction types include
existential restrictions], value restrictionsy, and cardinality restrictionss, =, >.

LethasChild be a property that represents that two individuals thateleged to each
other such that one is the parent and the other is the child eXample,hasChild(x,y)
states that is the parent of.

An existential restriction oParent could be3hasChild. Person. This states that for
eachParent there exists at least one individual that has tipeeson and is related to the
Parent through thenasChild relationship.

The existential restriction does not mean that ghie the hasChild(x,y) assertion
above is aPerson. There could be other individuals that fill the object of threperty.
This assertion says that there must be at least one, possikhown, individual that fills
this property.

A value restriction could beyhasChild. Person. This defines a set, or sub-class, that
states that for all members of this class, they are subjédtsedrasChild property, and
any objects they are connected to through this role must bgoefPerson. This does not
mean that therare any fillers of this property. It just states thathere arehenthey must

be of typePerson.
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ParentOfOne LC Person M YhasChild.Person M
JhasChild.Person = 1hasChild

FiG. 2.2. Equivalent OWL Encodings

A cardinality restriction could be= 1hasChild. This states that there is exactly one
one filler of this class. Cardinality restrictions are usedi¢scribe the sizes of the sets of
fillers for a particular class.

Figure 2.2 combines these class constructors to define a lasw, BarentOfOne.
This class represents the subclass of all things that afeeisé¢tPerson, and who only
have children that are also Rerson, and who have some child that i$arson, and who
have exactly one child. This demonstrates the capability Dlescription Logic to build

complex terminologies from simple constructors.

2.2 Types of Description Logics

Brachman and Levesque first demonstrated that the expeessiy of the DL drove
the runtime of reasoning and that for certain DL subsetsswsuiption queries can be com-
puted in polynomial time (Brachman & Levesque 1984). Tharknshowed that the com-
putational complexity of the reasoner can be controlledugh careful selection of the
language constructs. They showed that for basic Desanijigics, a reasoner could be
constructed which operates in polynomial time, while addimat other more expressive
constructors can move reasoning with the DL to worst-cas#ilN® and space. This was
one of the most important contributions to the field.

Because of the complexity results of Brachman and Leveselffierent Description
Logics can define a set of constructors and operators to akpnession of particular types

of relationships. For example, while all Description Lagyadlow the definition of subclass
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Table 2.1. Description Logic notation and meaning.
Symbol | Meaning
Attributive Language
Union of concepts
Existential quantification of roles
Numeric restrictions (cardinality constraints)
Negation of concepts
Inverse of roles
Intersection of roles
Stands fotdLCx +, 1.e. extension ofALC with transitive roles
Hierarchy of roles
Ability to define class by enumerating its instances
Qualified number restrictions
Support for primitive datatype®(g. integer, striny

TO0XTuINCZHIE

relationships between classes, not every language sspordtional properties or cyclic
terminologies. The set of operators supported by a paatidahguage determines the
reasoning properties of the language. Careful selectidhesfe operators allows a DL to
maintain the necessary expressiveness for a given apphoadmain while maintaining
the most efficient inference procedures.

Description Logics are commonly identified by the consttsthat it supports. The
naming convention uses a symbol for each of the construcidre DL name is the con-
catenation of these symbols. Table 2.1 contains the setrmfrmm symbols and their
meaning (Nardi & Brachman 2003), (Baader & Nutt 2003), (ldoks, Patel-Schneider, &
van Harmelen 2003). Description Logics are all subsets efdimily of Attributive Lan-
guage noted by the standard symhdlC. Each extension is noted by appending a symbol
on AL, connecting the DL name with its set of extensions. One s&lloéxtensions is
quite common, and is identified & which stands for the languageLCx- .

Using the symbols from Table 2.1, the Description Logi€Z/C would support the

baseattributive languageunion of conceptsand cardinality constraints The language
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SHIQ extendsALCr+ with role hierarchies, inverse roles, and qualified numbstric-
tions.

These extensions add expressiveness through inclusioifferedt constructors that
allow additional relationships to be defined. Different Exg#tion Logics have more in
common than differences, despite the variance in lingustimbinations. Despite their
differences, all Description Logics must provide a way téircdeeterminological concepts
and roles; assert instances of those concepts; store thssdians in a knowledge base
(KB), and perform inferences using that KB (Nardi & BrachnZg93).

One noteworthy consequence of the dependence of reasammgjexity on expres-
sivity is that complexity is independent of the actual laage used to represent the con-
structors. A serialization of a Description Logic descslibe language used to tell the
knowledge base new facts. The serialization can be basadditidnal logic formulae or
be specific to an application such as FACT (Horrocks 1999)loAg as the serialization
has some form for each of the supported DL constructors inlbasffect on the expres-
sivity of the DL or the reasoning hardness. In many caseshéolagy expressed in one
serialization can be translated to another serializatfidhesame Description Logic. This
is an important consequence for the development of the SmmAleb languages. The

semantics are determined by the DL and the reasoner, nottiadization.

2.3 TheT-Box and A-Box

There are two principle components of a Description Logiovdedge base. Thé&
Boxis composed of the intensional knowledge in the form of teotdgical descriptions
of the domain. The\-Boxis composed of the extensional, assertional knowledgefgpec
to individuals (Nardi & Brachman 2003). The syntax of thesseations depends on the

specific DL (and software) being used to implement the kndgéebase (KB).
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T-Box Defintion
Professor = Person MhasGradStudent < 1 3hasStudent.Student
Student C Person
hasStudent <« studentOf
hasGradStudent C hasStudent
hasGradStudent <« isGradStudentOf
A-Box Defintion
Professor(JONES)
Student(ABEL)
Student(BELL)
isGradStudentOf(ABEL, JONES)
isGradStudentOf(BELL, JONES)

FiG. 2.3. DL knowledge base for a simplified University domain.

Figure 2.3 shows a knowledge base that defines a highly siegpliniversity domain.
The language uses Tarski-style logic sentences (Stanfargdiopedia of Philosphy 2008).
The T-Boxexplicitly defines two concepts?rofessor, andStudent. The atomic concept
Person is implicitly defined as a result of being on the right handesad the Professor
andStudent definitions. Four roleshasStudent, studentOf, hasGradStudent, isGrad-
StudentOf are also defined. The concdpiofessor is defined to have the necessary and
sufficient properties of: Berson, having at least one studeiiasStudent), and having O
or 1 graduate studentegsGradStudent). The concepStudent is defined as a subclass
of Person. The rolehasStudent is an atomic role and defined to have an inverse role of
studentOf. The rolehasGradStudent is a sub-class of thieasStudent relationship, and
has an inverse role a$GradStudentOf. The A-Boxmakes five assertionSONES is a
Professor, ABEL andBELL areStudents; andABEL andBELL are graduate students of
JONES. The seeming inconsistency ABEL andBELL being students alONES will
be explored in Section 2.4.2.

Using the naming conventions of Table 2.1, the minimum DLt tten express this

ontology isALENT. This DL contains:Attributive Languaggwith Existential Quantifi-
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cation, andCardinality Restrictionswith Inverse Roles

2.4 Basic Reasoning Tasks

The primary task of a Description Logic is to support the sifisation of objects
within a hierarchy of concepts (Baader & Nutt 2007). The tartis of the DL are used to
define concepts and roles and to make assertions regardinglunals within the domain.
Automated reasoners are able to use the stated assertidisramnnologic statements to
infer new facts that were not explicitly specified during tB construction. Reasoners
typically answer two different types of queriesubsumptiorqueries against the T-Box,

andinstance checkingueries against the A-Box.

Subsumption A conceptC' is subsumed by a conceptwith respect to T-Box if C! C
D! holds for every model of T'. For example, we could use the KB in Figure 2.3 to verify
thatStudent C Person. Subsumption queries are used to answer other types ofegueri

including: satisfiability, equivalenceanddisjointnesgBaader & Nutt 2003).

Satisfiability Let C' be a concept, and represent the null concept. A concépis satis-

fiable (denotedbat(C)) if C'is not subsumed by the null concept:

Sat(C) «= —(C CL)
n

Equivalence Let C' and D be two concepts in the domain. The concepts are equivalent

(denoted” = D) if:

C=D<=CLCDandD C C
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Disjointness Let C' and D be two concepts in the domain. The concepts are disjoint (de-

notedC N D = Q) if:

CND=0«<CnNDLCL

Using these definitions, we are able to answer questions sfs®@T-Box of the KB.

For example, we can check if different concepts are satlsfiab

Example Check concept satisfiability by determining if the follogiis true.

Sat(Professor) <= —(Professor C_1)

The satisfiability of clasBrofessor is true so long as there can be at least one member
of the class. Most reasoners implement this check by cgeatranonymous individual and
executing the reasoning algorithm until the reasoner igateta or there is an inconsistency
created. In this case, with no further evidence the clasegsor is satisfiable because there

is no other evidence to show that it is not.

This set of definitions can also be extended to answer quedimst instances in the A-
Box. For examplejnstanceO f(JONES, Person) is true, becaus@ONES is an instance
of Professor, andPerson subsume®rofessor.

Using these definitions, the worst-case efficiency of therdlgms can be computed
as the cost for subsumption checking and developers of letyelbased systems can im-
plement systems using only a subsumption operator. Oneeaghtist useful contributions
of Description Logic is that the reasoner can be createdyusity a set of transformation

rules which are dependent on the expressivity of the DL. fititeg these rules enables the
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same reasoner to work on more expressive knowledge basegolhe regularity of these
rules, many heuristics and optimizations have been degdltpexploit common patterns

in ontologies to further improve the average case perfoomainthe reasoner.

2.4.1 Open World Assumption

The Open World Assumption is simply stated as anything that esserted in the
KB (or that cannot be inferred) is considered to be unknowrastMmplementations of
Description Logic reasoners choose the Open World Assamp®WA). The Open World
Assumption is a departure from traditional databases antesather knowledge-based
languages like Prolog that make the Closed World Assumptimy fact left unstated in
the Close World Assumption model is assumed to be false. i§fisquently described as
Negation as Failure

Suppose some traditional database contains a relatiomarifgeand children. There is
a row indicating thaALICE is the parent oBOB, and there are no other rows faLICE.
Under the Close World Assumption, selecting parents witlnentlkan one child would not
includeALICE. This is due to the lack of additional entries #®EICE in the database. In
this case, not knowing about any other childrenAiCE is equivalent to the case where
ALICE is known to have no more children.

Now consider the same example using the Open World Assumpfidhe knowl-
edge base contains the assert@sChild(ALICE,BOB). This assertion states that of all
possible worlds, the only valid worlds are those in whidhCE has a childBOB. Any
possible worlds in whichALICE has onlyBOB as her child are consistent, as are any
worlds in which ALICE has more than one child. Thus, asking the KBAIICE is
InstanceO f(= 1(hasChild.Person)) returns false, indicating that there maybe worlds
whereALICE has one child, but there may also be ones where she has maaudgsit is

not true inall worlds, then it is not true.
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2.4.2 Unique Name Assumption

One other area where DLs depart from other more familiaesystis that they do not
make the Unique Name Assumption (UNA). The Unique Name Agdiom allows two
individuals with different identifiers to be assumed to be tifferent individuals.

The definition of the university knowledge base in Figures28ms to contain a con-
tradiction regarding the number of graduate students asdippJONES. The knowledge
base contains assertions tdQNES is a Professor, which carries with it the necessary
criteria that he have no more than one graduate student. Bhald40 asserted th&BEL
andBELL satisfy theisGradStudentOf relation forJONES.

If there are no possible models of worlds where every factus then the KB is
inconsistent and the reasoner stops. The ABox of Figurede8 dave a possible model that
is consistent with the assertions in the knowledge base i®ine lack of the Unique Name
Assumption, it is possible that individus#ABEL andBELL are two different symbols for
the same individual. Without UNA, the reasoner cannot aatarally infer thatABEL #
BELL, and with the Open World Assumption, it cannot be concludhed this is or is not
the case.

Description Logics frequently define operators to assett $pecific concepts or in-
dividuals are not the same. For example, the university KBiglire 2.3 can contain an
assertion thaABEL is the same aBELL or that they are disjoint. Making extensive use
of these operators, to explicitly close possible unique emnean degrade reasoner per-
formance and cause quadratic growth in the size of the kridgeldase. For a class of
individuals, to express that all individuals are distinetmeech(n—1)/2 = O(n?) disjoint

statements.
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2.5 Tableau Reasoners

Prior to the emergence of tableau algorithms, reasonelsasKL-ONE (Schmolze,
Beranek, & Inc 1985) and KRYPTON (Brachmah al. 1985) relied on structural sub-
sumption algorithms (Baader & Sattler 2001). Structurgbathms rely on computing
normalized forms for each of the terms in the knowledge b&&ebsumption checking
is simply a comparison of the normalized forms of the two @pts (Horrocks 2003).
Structural subsumption algorithms are generally decalabt frequently incomplete and
difficult to extend to expressive DLs (Horrocks 2003). Tabl@lgorithms were originally
proposed by Schmidt-SchuabR and Smolka in 1991 to addrebteprs with structural
subsumption algorithms (Schmidt-Schaub3& Smolka 1991).

Tableau algorithms operate by constructintpbleau graphwhere nodes represent
the individuals of the graph, and directed edges indicd&iomships between them (Hor-
rocks 2003). The reasoner applies a set of expansion rukke tiableau. The algorithm
terminates when there are no remaining expansions or whiaslais detected.

There are a number of optimizations and simplifications Wwitgian be applied to im-
prove the performance of a tableau reasoner, includingcliacgefinitions in the TBox,
and an unfolding operation. The most important factor ingadgormance of the tableau
reasoner is the set of consistency-preserving transfaynsathat are available. The trans-
formations that are selected represent the logical cartstai the Description Logic. Un-
like structural subsumption algorithms, the tableau reas easily extended through the

additions to set of transformation rules (Horrocks 2003).

2.5.1 Acyclic TBox

Multiply Defined Class When a terminology contains multiple, partial definitions &

class, that class is said to be a multiply defined classCLé1 be distinct class descriptions.
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Let classA be defined with two statementd,= C'andA = D. Then classd is a multiply
defined class (Baader & Sattler 2001).

Cyclic Definition When a terminology contains a definition that depends ofif,itisas
said to be a cyclic definition. For example, suppose thereset af concept definitions in
aTBox: A; = C1, Ay = Cy, ..., A, = C,, whereA; occurs inC;_1, (1 < i < n)andA;

occurs inC,,. Then this is a cyclic definition. (Baader & Sattler 2001).

Acyclic Terminology A terminology (TBox) is an acyclic terminology if and onlyitfis
a set of concept descriptions that neither contains maltdgfinitions of the same class or

cyclic definitions.

Ensuring that a TBox is acyclic is important in order to gudea completeness of
the reasoner. Using an acyclic TBox allows the reasoneréansunfolding operation to
collapse the terminologic definitions into instance agsestand to perform all reasoning
on those instance assertions. The result is a much moreseffigasoner and an avoidance

of the hardness associated with allowing arbitrary TBoxstautts.

2.5.2 Unfolding

Unfolding Unfolding is a process that replaces references to definecepds with their
definitions. If the TBox is acyclic, then all defined concepés be unfolded into ABox

assertions of atomic concepts (Horrocks 2003).

Using unfolding with acyclic TBoxes eliminates the needaady reasoning with the
TBox. By applying unfolding rules such as those shown in Fegi4, the statements in
the TBox such as equivalence and subsumption can be appliedividuals in the ABox
(Horrocks 2003). In that figured represents the ABoX] represents the TBox4 is an

atomic, defined concepted;, is a defining concept.
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Uj—rule ifl. AcontainsA(z)and(A=C)e T
2. Cx)¢ A
then A — AU {C(x)}
Uy—rule ifl. Acontains-A(zx)and(A=C)eT
2. C(z)¢ A
then A— AU{-C(x)}
Us—rule ifl. AcontainsA(z)and(AC C)e T
2. Cx)¢ A
then A— AU {C(z)}.

FIG. 2.4. Unfolding Rules

2.5.3 Consistency Preserving Transformations

Given a KB with an acyclic TBox which has been unfolded using previous un-
folding transformations, then the tableau subsumptioorélgm can proceed using only
the ABox. The transformation rules for a tableau reasoradrithplements the Description
Logic ALC is shown in Figure 2.5 (Baader & Sattler 2001). The reasormksvby ap-
plying these rules and expanding the ABox until no furthéesiwcan be applied or until a
clash is detected.

The greatest challenge of this algorithm is in therule, where disjunction creates
non-determinism with respect to which fact to add to the AB@he non-determinism
caused by this rule is usually handled through search withktbecking. When the rule
is applied, it opens a set of ABoxes. For each ABox createtli;dtep, reasoning con-
tinues until a clash occurs, then the reasoner backtraakdraes the next ABox in the
set. Thus, disjunction is the primary source of complexitgt performance degradation in
these transformation rules and the cost of disjunction imesoa major motivation for this
research.

The rules shown in Figure 2.5 are a starting point for a reasolNore expressive

Description Logics can be built by creating more expressi@asformation rules. This
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M—rule ifl. A containgC;NCy)(z),
2. Ci(z)¢ AorCy(z) ¢ A
then A" — AU{Ci(z),Ca(x)}
L—rule ifl. A containgC; U Csy)(z),
2. but neitheilC; (x) nor Cy(z)
then A" — AU{Ci(z)}
and A" — AU {Cy(z)}
d—rule ifl. Acontains(3R.z)(x)
2. but no individuak such thaC(z) andr(z, z) are inA
then A" — AU{C(2),r(x,2)}
V—rule ifl. AcontainsVR.C)(z)andr(zx,z)
2. butnotC(z)
then A" — AU{C(2)}

Fic. 2.5. ALC Transformations

provides an efficient mechanism for the designer of a Desoni.ogic to manage the

trade-offs between expressibility and reasoning perfoceaa

2.6 Default Logic

Default logic refers to a form of logic where facts that are explicitly described
in the knowledge base are held to be true by default. Consigefollowing thought ex-
periment: suppose you were to model a class hamed ‘TigeratWéstrictions would you
define? Where would you place it in a taxonomy? By default,trpesple assume that
members of ‘Tiger’ have stripes, four legs, sharp claws,eatd people. Now, suppose you
were given additional information, namely that ‘Tiger’ isperseded by ‘Leopard’ and is
made by ‘Apple’. Now, our mental picture of the propertiestofer’ is suddenly changed
to be relevant to an operating system. We must retract ourque beliefs about ‘Tiger’
and reshape them to the operating system sense of the word.

Default Logic plays an important role for this research. ddf Logic describes the

process used to represent these default facts and hownoéeoan combine these results
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together during reasoning. Default logic also must addtessontraction of the knowledge

base to restore the KB to a consistent state.

2.6.1 Monotonicity

Monotonicity of a logic means that satisfying a valid formwan only result in the
addition of new information. A monotonic logic cannot indglte prior information as a
result of adding new facts to the knowledge base. If it is jidsg0 add a new assertion
to the knowledge base that invalidates a prior assertian the logic is hon-monotonic
(WWW Consortium 2004).

As an example of monotonicity, consider an example wherégbgult, all dogs chase
cats. This default rule is a stand-in for asserted data.l Wrfdrmation is stated about the
instances, this rule is true. In addition to this defaulerithe knowledge base contains
assertions that Fido is a dog and Fluffy is a cat. This wilbalkthe reasoner to infer, by
default, that Fido chases Fluffy. Later, the statementdksca Poodle’ is made. This is still
consistent with the knowledge base defaults so far. But Wha fact that Fluffy is a Tiger
(the type with sharp claws) is added to the knowledge basehigpoint, it is no longer
likely that Fido chases Fluffy, or if so, not likely for vergrig. Due to monotonicity, the
assertion that Fido chases Fluffy must be retracted. Thasidence of a non-monotonic
logic. The rule that dogs chase cats was a default rule. Téfigutt is considered to
be true until more information became available. With thdigoh of new information
there are instances that are no longer consistent with tt@ogy - not all dogs chase
cats. By including this default statement in the ontology teasoner must now deal with
the potential clashes caused as a result of adding new kndarrmiation that contradicts

default statements.
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2.6.2 Contraction

Contraction is an operation for restoring consistency o khowledge base by re-
moving the facts that create the inconsistency (Antoniou 8li&vhs 1998). This can be
a non-trivial process when the the facts that caused thengist@ncies are part of a long
chain of dependent facts. Simply removing a fact may leakergbarts of the knowledge
base unjustified. Contraction is frequently implementegaxs of a larger belief revision
system for default logics. The typical operation is to findngoformula,¢ that is part
of the inconsistent ontology. Aftes is found, the set of formulae that depend @mre
identified. Both¢ and its dependences are retracted from the knowledge basestste-
ments are added to prevenfrom being reintroduced by the re-application of defaulksu
(Antoniou & Williams 1998).

Contraction is generally implemented as part of a strategyléaling with the non-
monotonicity introduced through the inclusion of defaolgic. When a default fact must
be removed from the knowledge base, the contraction operetiused to remove only the
necessary facts to restore consistency in the knowledge b&® challenge is to keep the
cost of contraction to a minimum and to remove a minimum nurobécts.

Different forms of the contraction operation are describethe literature, such as
(Antoniou & Williams 1998), (Coluccet al. 2004). These approaches are based on the
need to carefully remove default facts from the knowledgeehander the assumption that
the cost of rebuilding them is higher than the cost to rembeent

Contraction is an important component of reasoning wittadkiflogics. It is used
to manage the removal of facts to restore consistency toribe/ledge base. Contraction

allows the reasoner to effectively handle the issues ofmontonicity.
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2.7 Relationship to Rule Languages

Description Logic languages, such as OWL, have been extettdmclude support
for rule-based languages, such as SWRL (lan Horrocks 20BM)RL is a rule language
that defines rules as pairs of antecedents and consequdr@sul€ is interpreted as any
time the antecedent is true, then the consequent is truelas we

For example, a SWRL rule takes on the forRerson(?p) M hasDog(?p, ?d) —
Dog(?d). This rule is triggered whenever there are objgsndd, wherep € Person, and
p ands are, respectively, the subject and object of the preditas®©og. When the rule is
triggered, then the type asserti@ng is added to individuadi.

The previous example of a SWRL rule does not modify the teotoigical descriptions
of the ontology and thus conforms to the Open World Assunmptidew individuals may
be added that fill the object of thesDog relationship, but they will not be typed aPag
unless the rule is re-executed. This rule demonstrate SIN&RL rules may obey the Open
World Assumption and monotonicity property of Descriptlorgics.

SWRL does support more expressive extensions, such adpratattachment, that
do violate the monotonicity property. Procedural attachimga type of rule that uses an
external procedure to compute some value to be enterechimtoibwledge base. The com-
putation is made with knowledge that is external to the regméation in the ontology. The
procedural attachment represents a portion of the termgicdl construction that exists
in the world but is not expressed in the ontology. As sucls tolates the Open World

Assumption and leads to non-monotonicity (lan Horrocks®00

2.8 Conclusion

Description Logics are a family of logics that are condudivehe development of

the Semantic Web. Description Logics have a trade-off betvexpressivity and reasoning
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complexity. This allows the construction of specializedsBrgption Logics that can provide
efficient reasoning over large ontologies at the cost of weekpressivity. This is essential
for the future development of the Semantic Web which wilbteea global knowledge base.
This facet of Description Logic is is of interest to this rasgh, especially the efficiency of
the reasoner with disjunctions.

Default Logic is another family of logic that, unlike Degutibn Logic, support rea-
soning over default rules. These logics play an importalet iroreasoning with data de-
rived from default rules. Description Logics may be extahtizinclude certain aspects
of Default Logic. In the event that default rules conflict vihe asserted information in
the knowledge base then there are operators such as cantridett can be used to restore
consistency.

Both forms of logic are of interest to this research whichetes on using the termi-
nological evidence in a Description Logic to infer defaudtements about other parts of
the ontology. The default logic will provide useful opecets to handle any inconsistencies

that arise as a result of this default knowledge generation.
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Chapter 3

SEMANTIC WEB

The World Wide Web has revolutionized the way we share in&diom. The informa-
tion published on the Web is organized for human comprebearesnd visual appeal, with
information embedded in document formatting and naturajuege. To get order from this
markup chaos, the Extensible Markup Language (XML) was ldgegl to create a strict
information markup language. XML has become the enabldre¥¥eb 2.0 revolution and
the interactive web. While XML gives structure and semanticthe data, it does not give
the necessary structure for automatic, shared undersoélihe information represented
in the document.

The Semantic Web is being built from a collection of techigads that enable infor-
mation to be exchanged between machines. At the core of thekrologies is the next
generation of mark-up languages that are based on formal lagguages. Automated
reasoners are able to use the formal semantics and cleadgea knowledge of these se-
mantic languages to perform reasoning and semantic quariacollection of documents.
Using the Web’s paradigm of linked documents, the Semang&b Will operate over the
global knowledge base. As simple as this idea sounds, tmera aumber of challenges
to answer before the greater benefits of this technologyuie éxploited. This chapter

presents a brief overview of the Semantic Web in Section @e$cribes standard repre-
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sentation languages Section 3.2, and the challenges f&enmntic Web development in

Section 3.3.

3.1 Overview of the Semantic Web

For many, the “Internet” began in August 1991, when CERNoiiticed the World
Wide Web project. The World Wide Web made the Internet usendlly and accessible
to the general population. The World Wide Web representsragndous leap forward in
human communication. People use it to perform everydataskuding communication,
banking, and shopping. In January 2006 an estimated lrbpémple world-wide used the
Internet. This figure represents 15.7% of the global pomridtnternet World Stats 2006).

The web was initially envisioned as a way for humans to compate and as a plat-
form for software agents to carry out tasks for their usettse ihformation published on
today’s web is mainly for human consumption. Web pages aofdege amounts of docu-
ment formatting markup to control how the page is displayed gcreen. A large number
of documents contain structural errors that can make itcditffor machines to parse the
content of the page (Google 2006). Much of the informatioblighed on the web is ac-
tually content that was originally generated from a datab&ven though the information
originally was stored in highly normalized and structurediatbases the semantics are lost
when the data is embedded in the formatting of the web pageéBeLee 1998).

The encoding of information into a browser markup makesfitadilt for automated
processes to extract meaningful information from a web pa®gstems typically resort
to customized text-extraction and mapping algorithms td knowledge from web pages
(Cimiano & Volker 2005), (Abitebouét al. 1997) and (Mooney & Bunescu 2005). Un-
fortunately, these systems have great difficulty overcgntive problems created by irreg-

ularity of natural language. If the information is encodadan unexpected manner the
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information will be unusable. As a result, using exactly shene set of web pages, differ-
ent extraction algorithms are likely to produce differeasdriptions of the world. Natural
language processing is a hard task and is not likely to beedaivthe near future (Russell
& Norvig 2003).

Berners-Lee, the inventor of the World Wide Web, proposedSbmantic Web as a
way of publishing information specifically for machine cangption. The Semantic Web
uses markup languages, such as OWL, that express knowle@gaachine readable for-
mat. These languages define fixed semantics to describepterared their relationships
to each other (Berners-Lee 1998). Automated reasonerretiie fixed semantics and
asserted knowledge to infer relationships between coacdpse of languages designed
for the Semantic Web enables document linking much like tloeldWide Web. In the
Semantic Web, linked documents allow the sharing of a comdeseription of some part
of the world. This common set of semantics make an ontologgthil allow reasoners to
work over large collections of documents spread througtiautvorld.

The Semantic Web has the potential to revolutionize the weagdns use computers.
Instead of using them to communicate with each other, theaBgmWeb promises to
usher in a new generation of intelligent agents. The expieatss these agents will be able
search the internet for knowledge, not substrings; comoat@iwith each other, not just
other humans; and understand the intention of the task tleegaarying out, not just the

statement of it.

3.1.1 Growth of the Semantic Web

There has been considerable growth in the number of Semdfaixz Documents
(SWDs) published on the Semantic Web. In January, 2006¢ thex over three hun-
dred thousand SWDs defining over four thousand ontologiesyst one hundred thou-

sand classes, and over seven million triples in the Swooafi@bdise (Swoogle 2006). In
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comparison, there are over nine billion pages in Googldaluese (Google 2006).

One trend stands out in Swoogle’s statistics. The numbeoactdimhents in Swoogle’s
database showed almost no growth throughout 2005 (Swo@@&)2 This is contrary to
the exponential growth in the number of registered userh@fRrotege tool, a popular
ontology editor (Stanford Medical Informatics 2006). Onaysible explanation is that
many of the new ontologies are being used internally, ordoembedded in information
systems that aren’t publicly accessible, that is, they areqd the ‘deep web.

The wide-spread adoption of the Semantic Web is delayed byra fandamental
factor: cost. Presently, highly trained knowledge engis@ee employed to construct the
high quality ontologies for use on the Semantic Web. Thiskweiquires training with
logic and reasoning and domain knowledge. Some skeptica ttet in its current form,
the Semantic Web “may work well for targeted vertical apgiilcns where there is a built-in
economic incentive to support expensive mark-up work (sisschiomedical information),
such a labor-intensive platform will never scale to the Wel avhole” (Wright 2008).

There is a well-established need for tools to help autontaseprocess. Automating
the process of generating ontologies will help reduce tis¢ abpublishing semantic data
and help open the creation process to a large audience. 8dganch describes a process
that generates property constraints based on the terngyolica knowledge base. Future
tools like this may help encourage acceptance of the Seolakth and lead to a fulfillment

of Berners-Lee’s vision.

3.2 Semantic Web Languages

The World Wide Web Consortium (W3C) (W3C 2008) is an inteiora! consortium
dedicated to maintaing the standards used on the World Wete This body is responsible

for maintaining standards for languages such as the Extengiarkup Language (XML)
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<dat ebook_ent ry>
<dat e>Mar 3, 2005, 10: 30am EST</ dat e>
<title>Dentist Appointment</title>
<descr>Go to the dentist for a check-up</descr>
</ dat ebook_entry>

FIG. 3.1. Example of an XML date book entry.

and Resource Description Framework (RDF). The W3C alsotaiamthe standard for the
Web Ontology Language (OWL). OWL has become deefactostandard Semantic Web
Language. OWL is based on an encoding that uses the RDF andididuage to markup
data and constructors borrowed from Description Logicsis Shction explores the roots

of the OWL language and provides an overview of its major tross.

3.2.1 Base Languages

The Semantic Web is based on a pair of languages, the Extenarkup Language
(XML) and Resource Description Framework (RDF). They aredus a wide range of
applications beyond the Semantic Web. For example, XML &gy a growing number
of applications to interchange data, and it is used as a laagpidge for the emerging

XHTML markup language that is set to replace HTML.

Extensible Markup Language The Extensible Markup Language (XML) was de-
veloped as a data interchange language (World Wide Web @oanmea2005a). A sample
appears in Figure 3.1. This sample describes an entry froatealmbok that includes the
time and a brief description of the event. This represemat only useful if some pro-
gram is coded to interpret the semantics of this entry. Adgipsystem that uses XML to
exchange data requires a manual mapping between the XMLhahdgplication.

Really Simple Syndication (RSS) is an XML based mark-up #fatvs the encoding
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of news feeds (Wikipedia 2008). A developer must map souata t the RSS format.
This allows applications to display those news feeds in eetyaof fashions. For example,
the RSS format specifies concepts such as feeds and articéso specifies components
of each concept such as titles and descriptions.

XML does not satisfy the needs of the Semantic Web. XML do¢&nforce a consis-
tent schema for assertion of common facts. The sample shevendsserts an entry from
a Date Book. Humans can readily interpret the meaning of titees in this example.
To a software agent these are just symbols without any mgafinere is an unspecified
relationship between a datebook entry, in the example, arappointment in some other
application. It is up to the developer to define the relatimbetween the two concepts.

The way RSS evolved is a good example of the lack of semamti¥$iL. RSS was
designed to support news feeds. Presently, it is used te siamny types of data, including
video ‘podcasts’ and hurricane forecast graphics (Apple, 2008),(National Hurricane
Center 2008). Apple’s popular iTunes service uses a modigegion of RSS (Apple,
Inc. 2008). There are no built-in semantics to automaiaaller relationships between
the standard RSS types and the Apple extended types. If dopevehooses to include
application support for Apple’s extended RSS tags they ipesioded into an application.
If every vendor made their own version of RSS then an apjdicateveloper would need
to encode for all of the different standards. The lack of arclkeamework to express
relationships between extended types can void any benefisioff XML and standard
schemata.

This does not mean that XML does not have a place in the fufuhtedVeb. The con-
cept of wrapping data in XML as opposed to the past practiagsofg unstructured files
represents a major advancement for machine representdittaia. Using XML as a rep-
resentation language allows complex data to be represgnészbnsistent manner, justifies

development of XML schema, and promotes the developmertantiardized tools.
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<?xm version="1.0"?>
<rdf: RDF xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: externms="http://ww. exanpl e.org/terns/">
<rdf: Description rdf:about="http://ww. exanpl e. org/i ndex. htm ">
<exterms:creation-date>August 16, 1999</extermns:creation-date>
</ rdf: Description>
</ rdf : RDF>

FIG. 3.2. Example of an RDF entry.

Resource Description Framework The Resource Description Framework (RDF) is
based on the XML format, and is the basic building block of$leenantic Web. Resources
are uniquely identified by a Uniform Resource Identifier(YRhd their relationships to
other resources. Resources are described as a set of tfiglé@gect propertyor predicate
and avalueor object

Figure 3.2 shows a basic RDF entry. Line one specifies theovecs XML com-
patibility. Lines 2-3 specify the RDF namespace alias to 'slRluch that the prefix df
maps to the URht t p: // www. w3. org/. .. and the prefixext er ns maps to the
URI ht t p: / / www. exanpl e. or g. Line four introduces a new resource with a subject
of htt p: / / ww. exanpl e. or g, a predicate oéxt er ns: cr eati on- dat e, and a
value of August 16, 1999. Note thatext er ns is really an alias for the full URI
http://ww. exanpl e. org/terns.

The Resource Description Framework has several advantageshe simpler XML
language. Objects are described using simple sets of girepére. the RDF triple). Re-
sources are identified by their URI, allowing linking betweesources across the web, and
allowing resource descriptions to be re-used (World WiddWensortium 2005c¢). How-
ever RDF lacks a common vocabulary for describing key pittggeneeded by inference
procedures (e.g. isA). This is addressed in the Resourceripgsn Framework Schema

(RDFS) extension. Even with these extensions, RDFS is roessive enough to capture



[N

O © 00 N O U~ WN PP

38

<rdf: RDF
xm ns: rdf =" http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena#"
xm ns: rdf s="http://ww. w3. org/ 2000/ 01/ r df - schema#"
xm ns: owl ="http://ww. w3. org/ 2002/ 07/ ow #"
xm ns="http://ww. ow - ont ol ogi es. com unnaned. ow #"
xm : base="http://ww. ow - ont ol ogi es. conf unnaned. ow ">
<ow : Ont ol ogy
rdf : about =" Descri bes sinple car and driver relations."/>

FiGc. 3.3. Example of a OWL-DL ontology header

all class relationships (World Wide Web Consortium 2001).

3.2.2 OWL

The Web Ontology Language (OWL) was recently recommenddaet®V3C for ac-
ceptance as a standard. OWL is based on RDF and DAML+OIL han@emantic Web
Language. There are three flavors of OVWAull, DL, andLite, forming a hierarchy, such
that an ontology using OWL Lite is also in OWL DL, and an ontplausing OWL DL is
also in OWL Full (World Wide Web Consortium 2005b).

The three flavors of OWL support different degrees of expvesgss and reasoning
properties. OWL Lite provides for a very basic classificatfoerarchy and simple con-
straints. OWL DL supports highly expressive ontologies ateb admits complete and
decidable reasoning. OWL Full supports the maximum expreissss, but looses the ef-
ficient reasoning capabilities of OWL DL, since it is unlikghat there will ever be an
efficient reasoner for OWL Full (World Wide Web Consortiun030). This research con-
siders only OWL DL. It is the only one of the three versionst thantains the necessary
expressiveness for this project and supports efficient pbete, and decidable reasoning.

OWL-DL ontologies contain an optional RDF/RDFS style heamled a set otlass

property, and individual descriptions. A sample header appears in Figure 3.3. The
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RDF/RDFS header contains a set of aliases that define the siaae (and also link on-
tologies together). This header imports several diffenemhe spaces and associates each
with an alias. It also contains an annotation which allowgregsion of ontological meta-
data, similar to comments in programming language sourde.c®hese annotations are

meant for developers and are not used by reasoners.

3.2.3 OWL Classes

A class in OWL is described using formal descriptions thatestequirements for an
individual to be a member of the class. These requiremeptsg@acified as sets of prop-
erties that are either necessary and sufficient for memipefalowing class membership
to be inferred), or simply necessary (allowing individuedjperties to be inferred based on
class membership assertions). Classes are organizednimbberitance hierarchy (using
rdf : subCl assOf ), such that one class that is a subclass of another classtintiee
properties of the super class.

OWL-DL allows multiple inheritance, where a class is defiasd sub-class of mul-
tiple super-classes. Multiple inheritance allows extrignegpressive class concepts to be
developed, linking various branches of the class hierand®; It also creates the potential
to introduce inconsistencies into the knowledge base. ¥amele, a sub-class may share
two super-classes with mutually exclusive role restritsioOntology developers must be
wary of unintended relationships and the possibility fmadinsistencies caused by multiple
inheritance.

Figure 3.4 shows a simple class definition of a class navebditcle Lines 2-9 assert
that aVehiclehas thehasDriverproperty, which is satisfied if an individual is defined with
an individual that is a subclass of tBeiver class. Line 10 is important, as it asserts that
a Vehicleis disjoint from other sibling classes, in particular, taadtehiclecannot also be a

Driver. Finally, line 11 asserts that\&hicleis a sub-class adwl:Thing
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<ow : d ass rdf: about ="#Vehi cl e">
<rdf s: subd assCf >
<ow : Restriction>
<ow : onProperty>
<ow : Obj ect Property rdf: | D="hasDriver"/>
</ owl : onProperty>
<ow : soneVal uesFrom rdf: resource="#Driver"/>
</ow : Restriction>
</rdfs:subd assOf >
<ow : disjointWth rdf:resource="#Driver"/>
<rdf s: subd assCf
rdf: resource="http://ww. w3. or g/ 2002/ 07/ ow #Thi ng"/ >
</ ow : Cl ass>

FiG. 3.4. Example of an OWL-DL class definition G@&hicle

<ow : Obj ect Property rdf: I D="isDriverO">
<rdf s: domai n rdf:resource="#Driver"/>
<ow : i nverseO >
<owl : Obj ect Property rdf: about ="#hasDriver"/>

</ ow :inverseX >

</ owl : Obj ect Property>

<ow : Obj ect Property rdf: about ="#hasDri ver">
<rdf s:range rdf:resource="#Driver"/>
<ow :inverseO rdf:resource="#isDriverOf"/>

</ owl : Obj ect Property>

FiG. 3.5. Example of an OWL-DL property definition b&sDriver

Defining a class without creating inconsistencies using Qd&h be complex. For
example, in the previous example, it is recommended thattdihg classes assert that they
are mutually disjoint with each other. Consider the defamtof another primitive class,
Boat that also has the propertyasDriver Using this simple criteria, a reasoner would
conclude thatehicleand Boat are the same class. There are a number of design issues
that apply to defining OWL classes, and this discussion isheéyhe scope of this work.
See (Horridgeet al. 2004), (Stanford Medical Informatics, Stanford Universsichool of
Medicine 2006), (Noy & McGuiness 2005) for a more detailestdssion of these issues.
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<Driver rdf:ID="Tont>
<isDriverOf >
<HondaPi | ot rdf: | D="TonsHondaPi |l ot">
<hasDriver rdf:resource="#Ton'/>
</ HondaPi | ot >
</isDriverO >
</Driver>
<ow : Al lDifferent>
<ow : di sti nct Menbers rdf: parseType="Col | ecti on">
<Driver rdf:about="#Tonl/>
</ ow : di sti nct Menber s>
</owWm:AIDfferent>

FIG. 3.6. Example of an OWL-DL instance definition obDaiver

OWL Properties Properties in OWL are binary relationships between a clads a
other classes or values. They may be defined as invertibtengyric, and transitive. Fig-
ure 3.5 is an example of a definition of a simple propér&gDriverand its inverseis-
DriverOf.

Classes can be defined using complex combinations of prepgricluding:
e owl:intersectionOf
e owl:unionOf and
e owl:complementOf

Asserting these relationships actually implies the eristeof an anonymous class that
carries the properties described by the property (Horratgg. 2004).

In addition to these basic properties, OWL-DL also suppuortstiple inheritance of
properties. OWL-DL allows the definition of a property as &-guoperty of a parent,
where the sub-property inherits the domain and range céstis, as well as the inversion,

symmetry, and inversion properties of its parent.
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OWL Individuals  OWL allows definition ofindividualsby defining their properties
and assigning corresponding values. Individuals are stergionly when their values meet
the defined constraints. In Figure 3.6, an individual withrof Tomis defined to be of
classDriver. Lines 2-6 assert thdiomis a driver of another individuallomsHondaPilat
Finally, lines 8-12 define a collection of individuals tha¢ all mutually distinct from one
another. This is necessary since OWL-DL does not make thguénName Assumption
for individuals: objects with different names are not auatically assumed to be distinct

(see Section 2.4.2). (World Wide Web Consortium 2005b)

Semantic Web Languages Summary The preceding description of Semantic Web
languages represents a brief sample of the many differaguges being developed or
proposed as standards to the W3C. The Semantic Web is anldesdlimultilingual space,

where developers may select the appropriate language fapication.

3.3 Semantic Web Development

Publishing information to either the traditional web or themantic Web seems to
follow a similar path. First, a view of the data to be publidmeust be selected. Then, a
markup language must be selected. The data must encodegthatmmarkup language.
The final result must be placed on a web server and made dulectssa selected group of
users.

The similarity between these two tasks vanishes quicklynuposer inspection. The
intended audience completely differentiates these twksta&/hen the audience is a human
in the traditional web, data is frequently summarized amsg$omuch of its internal struc-
ture. When the data is published for the Semantic Web, theestetuld be published in full
context, complete with its relationships to other data elets. The markup language that

is selected will either help create visually appealing wabgs or effectively encode clear
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semantic relationships between knowledge. The actualupadols used will either help
the user maintain consistent styles across pages of a wetmsltcheck for link errors; or it
will use the reasoner to help ensure that the ontology isistams.

This section provides an overview of the current develogn&sks and tools that
are being developed to support the emerging Semantic Welnakd interoperability of
reasoning tasks seamless. The development tasks, manyatf are also active research
areas, are: ontology generation, ontology linking andegastology integration, merging

and mapping; and trust and provenance.

3.3.1 Generation

Ontology generation refers to the process by which domaowkedge is encoded
into an ontological representation. The goal is to encodamadge in such as way as
to allow automated reasoning procedures to obtain meamdguaeful results through
symbolic manipulation (Embley 2004). Currently ontologgngration is a manual process,
requiring individuals with domain expertise and knowledfidescription logics in order to
develop ontologies that are applicable to the relevant doarad are correct and consistent

representations of the domain with respect to the desonipdigic framework being used.

3.3.2 Linking and Reuse

Reuse describes the process where existing ontologiesased to publish new on-
tologies. The RDF name space mechanism allows a singlecgytoeb be composed of
existing ontologies, creating a global database of linketesas. Linking to, and thus
reusing existing ontologies, may reduce the developmests@ssociated with ontology
development, and ideally helps improve the semantic reptation of the published infor-
mation.

One example of a frequently used ontology is the Friend-Bftand (FOAF) schema
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(Brickley & Miller 2008). According to Swoogle, this is theast frequently referenced
ontology schema in the Semantic Web (Dietgal. 2004). Tools such aBOAF-a-Matic
simply prompt the user for information and generate an RD&udwent that imports the
FOAF schema adds the appropriate values RDF entries basi aser’s input (Dodds
2008). Using this tool, users with little or no experiencéhwdescription logics are able to
populate the form and generate an RDF document that des¢hibie personal information.
Reusing ontologies has many challenges similar to reusingee code that can lead
to errors (Noy 2005). These errors may include: ontologysiens, incorrect reuse, and

finding appropriate ontologies.

3.3.3 Revisions

Revisions to existing ontologies may cause dependentaygitsd to become inconsis-
tent. The RDF, through its name space mechanism, allows tatogy to import external
ontologies and define members using those external scheorsider the following ex-

ample of how revisions and reuse can create inconsistencies

Example Suppose Alice published an ontolo@y, that contained a property, defined
with a minimum cardinality of ong 2| > 1. Bob found ontology) 4 and imports itinto his
ontologyOg, along with some other set of ontologi@s;y,.,, such thagz = O 4 & Ouer,
where the binary relatiom represents the composition of two ontologies through arunio
operation. Later, Alice modifie® 4, and alters the cardinality constraints Bnsuch that

|P| > 2. Any individuals inOp that do not meet the new constraints will be inconsistent

Currently, the best solution is to strongly enforcéest practicesapproach toward
semantic revisions (World Wide Web Consortium 2005c). Turgggested practice is to in-

clude a version number in the URI of the schema (for examge,tke previous FOAF
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URI). In so doing, a developer can create new versions ofiegisesources without break-

ing any linked documents.

3.3.4 Integration, Merge, and Mapping

Integration is commonly used to describe three differesitgancluding: building on-
tologies by reusing existing ontologies (we called thigilig / reusing - see Section 3.3.2),
when building an ontology by merging existing ontologiest(linking), and building an
application using one or more different ontologies (Pine®9). We refer to integration
as the process of defining a new ontology by conglomeratmgyhole or in part, a set
of different ontologies (possibly from different domaimsjo one new ontology (Pinto &
Martins 2001).

There are five different strategies for solving this problemdeveloping integrated

ontologies (Ding 2005):

One Centralized Global Ontology This strategy would impose a global schema over the
Semantic Web. This removes the loosely federated developprecesses of the
current semantic web and forces development of new onteddgisome central au-
thority. While it is tempting to speculate that this wouldnave semantic ambiguity,
it is unlikely that this would be the case. This is clearly umgortable without con-
siderable investment of resources and is in disagreemémtivg stated design goals

of Semantic Web.

Merging Ontologies Merging derives a new ontology from a set of candidate ogiek
Generally, a candidate is selected based on some heuwsistitas linguistic / natural
language processing, syntactic analysis, or some hybstesgy Classic examples

include Chimera (Zhet al. 1999), and PROMPT (Noy & Musen 2001).
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Mapping Ontologies Mapping ontologies uses a process to map between entriggin t
ontologies based on a manual, semi-automatic, or fullyraati process. Auto-
mated processes often rely on NLP or statistical approachegntify mappings in
the structure or contents of the two ontologies. Exampléesys include Anchor-
PROMPT (Noy & Musen 2001), BayesOWL (Pan 2005), and GLUE (Deiaal.
2002).

Ontology Translation Ontology translation takes two ontologies and attemptsatasiate
the structure and individuals from one to the other. Ontajdaes an example system
that uses a set of refactoring rules to translate from onelayy to another. (Dou,

Mcdermott, & Qi 2002).

Runtime Ontology Resolution Each of the previous strategies happens during ontology
creation. Runtime resolution is designed to detect andlkarahflicting information

that is identified during the reasoning process.

These tasks each depend on the evidence in the ontology awepaticular use of
finding relationships that have the same or similar semant@onsider the problem of
mapping two ontologies to each other. The mapper must betalfiled similar concepts,
properties, and individuals and add assertions to map themeach other. The lack of
well-defined assertions, or worse, unequally defined asasnvill be problematic.

Suppose two ontologies are to be mapped to each other. Therfitdogy contains
a property,ownsCar, which has a domain dferson and a range ofar. The second
ontology contains a propertyasTitleTo, which does not have a domain and range at all.

What conditions must be met for the mapping agent to joingle® properties? In
order for the mapping agent to even consider these two fopmgjhere must be evidence
that they are related. These two properties have diffeggpitability. One clearly applies

to people and cars, while the other is not related to any Bpexincepts (no domain or
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range). The mapping agent will external external knowletigecar ownership is identical
to having the title to the vehicle.

To continue this thought experiment, consider the sitmatihere the property
hasTitleTo has a domain and range that the mapper identifies as beinticaleio the
ownsCar property’s domain and range. Now there is strong internaesce that these
properties are similar.

Well defined property constraints are important for the sasful operation of many
of these algorithms. Further, the success of these algwsith important for the successful
growth of the Semantic Web. Therefore well defined propestystraints are important for

the successful growth of the Semantic Web.

3.4 Conclusion

The Semantic Web is an evolving research and developmearpeise. Developed for
the representation and reasoning about information, theaec Web is a major departure
from today’s visual web. By marking up information for maoés, the goal of the Semantic
Web is no longer how to render information on a screen, butadkensites contain relevant,
complete, and accurate information.

New languages, extensions, reasoners, and tools are walhfibeing developed. In-
terest in Semantic Web technology is spreading beyond atadeterest, and systems are
beginning to be deployed with semantic technologies at tiwee.

However there are significant challenges that must be askeidsefore wide-spread
acceptance of the technology can occur. Some of these arelgling generation, reuse,
and mapping, put demands on the quality of the structureeobtitologies that are to be
used by those processes.

Ontology generation techniques may be able to bridge thdealivetween the large
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amount of data and semantic knowledge. Generation techsiouay also be able to im-
prove existing ontologies to either increase the amounnofedge that may be inferred
from the ontology, or improve the performance of the reastmanfer those facts.
Without consistent, well-defined, and structured onta@segb reuse or map to, then
the quality of the mapping and reuse will suffer. Ontologlest are missing information
or are not fully developed to maximize the amount of inforimathat can be inferred from

them are going to be less useful to semantic services.



Chapter 4

DOMAIN AND RANGE CONSTRAINT GENERATION

Domain and range constraint generation is the process ofratically creating con-
straints for the properties of an ontology based on the egeleontained in that ontology.
The strongest evidence for domain and range constraintesdmm the terminological
statements, specifically in the role restrictions used as<ldefinitions. Individual role
assertions are problematic for a number of reasons thabeiixplored in this work.

Constraint generation is an important task for a numberadgaas. Proper constraints
on a property act as type assertions that add valuable iatosmabout the individuals
that participate in those roles. Well defined constraints lvalp define the intention of
a particular property, which is especially useful for mdmraautomated ontology tasks.
Despite these benefits, empirical evidence gathered fraanga kollection of ontologies,
an overwhelming number of properties do not contain coimgra Generating property
constraints may be able to fill in the missing constraintseoused as a tool to suggest new
or verify existing constraints.

There are many different ways to approach constraint ggaeran particular, the ap-
proaches described here will rely only on the terminoloiggeadence contained in the def-
inition of class restrictions. Three different approacldisjunction, least-common named

subsumer, and vivification will be explored.

49
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In certain circumstances, constraint generation can ledde inference of new in-
formation which was previously unavailable in the ontologyy other circumstances, the
use of the constraint generation will provide direct evitkeof concepts which the rea-
soner would discover through inference. In this case, thrextiassertions contained in the
constraints will reduce the work required by the reasongeirerate it. The determining
factor depends on the relationships between the terms imtiegitance hierarchy. The
most extreme cases of generated constraints will be créd@edre long chains of disjunc-
tions of terms or else the top concept. In the best casestraoris can be determined that
accurately model the domain and range of the property wighidéhst number of useless
disjunctions.

Section 4.1 provides a detailed overview of domain and rangstraints and explains
why they are an important feature of a description logic.ti8act.2 presents an overview
of the generation process and available sources of infoomaSection 4.3 describes the
disjunction algorithm, Section 4.4 presents the leastrnomnamed subsumer algorithm,
and Section 4.5 presents the vivification algorithm. Fipatloncluding remarks about

constraint generation appear in Section 4.6.

4.1 Domain and Range Constraints

OWL properties are based on roles in Description Logic (8ac.1.2). Properties
are interpreted as a mapping between instances of two slasseclass and a datatype. A
property P, written in OWL asObject Property(P) or DatatypeProperty(P) defines a
mappingP C O x O or P C O x LV whereO is some class andlV' represents a lit-
eral value (World Wide Web Consortium 2005b). When definimg terminology (TBox)
for an ontology, a property is described in terms of its refahip to other properties (a

property may be a sub-property of another property), or usadole restriction in the defi-
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nition of another class. In the assertional section of thtelogy (ABox), property relation-
ships are associated with specific instances, for exarh@éy ame(JOH N, JOHN'), or
teaches(SMITH, ABEL).

Property descriptions are translated into generalizedegrinclusion (GCI) axioms.
A GCI defines a subset of the universe and is used to computeesabership. The prop-
erty definition itself does not directly translate into a Gt its domain and range con-
straints do. Restricting the domain of a property to con€éx translated into a GCI of
JR.T C C, and restricting the range of a property to condeps translated into a GCI of
T C VR.D (Tsarkov & Horrocks 2004).

Asserting that some unconstrained property relates twiwithehls but does not pro-
vide any further direct evidence about either the subjeobgect of the property. The only
information given is that the individual is eitherTaing or a literal value and it shares a
relationship through the property to another individual.

OWL extends both object and datatype properties with caogirs to optionally de-
fine domain and range constraints. An object property defmivhich includes a domain

and range is written in OWL as:

ObjectProperty(P domain(dy) ...domain(d,) ...range(ry)...range(ry))

and is interpreted as a mapping:

PC(OxO)N(dyxO)M...(dyxO)1...T1(O x711)...(0 X ry)

A similar OWL syntax and interpretation exists for a data&tygoperties as well (Grau &
Motik 2008).

When an object property connects two individuals, one iildial is the subject and
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the other is the object. The subject is interpreted as a asbaf each of the domains
defined for the property and the object s interpreted as elasof the ranges. If there are
multiple domain or range definitions then they are treated sisgle intersection of each
of the types. In the case of a datatype property, the progeripects an individual and a
literal value. The subject continues to be a subclass of dmeaths and the literal values
are matched to the specific range of the property.

Treating multiple constraints as an intersection is cauimtgitive. Suppose a prop-
erty, hasLegs is defined with a domain ofnimal andFurniture. Any subject of this
property will be asserted to Heoth Animal andFurniture. Ontology developers fre-
guently create a single constraint that is a disjunctionrairaber of concepts. This is such

a common practice that tools like Protege do this by default.

4.1.1 Unconstrained Properties

Unconstrained properties are of little value when refeesnio them occur only in
direct assertions between individuals. The presence adsgrtion states that a relationship
between the two individuals exists. Since there are no dowraiange statements and no
other reference to the property, there are no further typertiens that can be inferred. The
meaning of the relationship is subject to the external pregation of what the symbolic
property name represents.

Domain and range constraints on properties can providekunformation to on-
tology developers and reasoners. Constraints are notl\stnecessary according to the
OWL specification. Including a constraint definition proesda tighter set of semantics for
the property and stronger typing of those individuals tmatfdlers of the property.

Domain and range constraints provide important infornmategarding the intentions
of the original author of the property to a developer reudimg ontology. One of the

fundamental design goals of the semantic web is the reusatofogies. Specifying the



53
domain and range constraints for a property helps commigneactly how this property
is supposed to be used. Based on these constraints an encamedecide if the given
property is applicable to classes in their ontology.

The accompanying class assertions of stated domains agesradd valuable axioms
to the reasoner. In some cases, this helps reduce the wohHe akasoner by asserting
instance information directly that would otherwise neetd¢anferred. When the reasoner
encounters a property assertion on a pair of individuaks,stlibject individual immedi-
ately becomes a subclass of the domain and the object be@sudxlass of range of the
property.

There are many reasons why these constraints may be leffonrte of these reasons

are:

e Information is unknown

Faulty model of the world

Artifact of ontology generator

User error

Intention of developer

To avoid conflicts with reuse of the ontology

One reason the constraints may not be specified is that tbemation may simply
not be known to the ontology developer. The developer may loave partial information
about a domain and is therefore unable to fill in the domain ramgde with necessary
precision. This may happen if the developer is unfamilighwie domain he is modeling
and unable to accurately describe appropriate constraintee constraints may not even

exist in the ontology.
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One signal that there are faulty semantics in an ontologhas the ontology lacks
concepts that adequately describe key concepts in theogytdror example, the ontology
lacks concepts that describe the domain and range for antyoper example, suppose the
ontology consists of a propertasLegs. The developer uses this property to describe two
disjoint concepts: the number of legs obag and aTable. The domain of the property
hasLegs become®og M Table because OWL combines multiple statements as an inter-
section of those classes. Because these are disjointg|éisseéntersection is unsatisfiable,
and the ontology is inconsistent. Although this is a ratharly simplified and egregious
example of the problem, it is clear that the inability to sekeconcept for the domain hints
at a larger problem with the model of the world. In this examplsLegs should probably
be split up into different properties.

Ontology generators take data from some non-semantic s@uch as a relational
database and restructure the data into an OWL ontology rdielgabriani, & Missikoff
2001), (Modica 2002). These systems typically do well ataiging the data into classes,
individuals, and properties based on the relations of tiggr@l schema. They frequently
have difficulty accurately constructing the domain and eangncept descriptions from
these sources (Modica, Gal, & Jamil 2001). In Section 2iedifferences in interpreta-
tion of domain and range constraints between Descriptiagidsoand RDBMS was intro-
duced. Using the domain and rantype restrictionin an RDBMS may not be equivalent
to thetype definitiorsemantics of Description Logics.

The lack of a domain and range constraint could simply be duesér error. Using
tools like Protege, one must first create the classes fordiradh and range and then create
the properties. In a complicated, large ontology, it is veagy for the developer to add the
properties and not return later to fill in the constraints.

The final reason for the lack of constraints is that it couldtioe intention of the

developer. The developer may be using a property as a veagdlpmperty assertion and
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does not intend it to be used to automatically create clasgsion axioms with a particular
property assignment. There are good reasons why a devel@yeintentionally choose to
leave a property with under-specified constraints. Two seelsons are that there is not
sufficient expressivity in the chosen language to supperiritended constraints and that
the ontology is expected to be used by other developers ard th no way to extend
constraints in an imported ontology.

The present version of OWL does not support domain to ranggimg. In the def-
inition provided above, the domain and range can be spe@#edl collection interpreted
as the intersection of the members. A specific domain andceraagnot be specified as a
pair. Consider thaasLegs example above. If the domain and range could be paired, then
the property could contain a pairingBfped has range, while domain ofQuadruped has
range 4.

OWL is designed to be a language for the Semantic Web. A afitiart of this lan-
guage is the support for linking to other documents in the &g Web. With the present
version of OWL it is easy to import another ontology and imég and extend its classes,
properties, and individuals. One thing that cannot prégdyet done is to modify the do-
main and range constraints of a property. There is not a nészingo extend the definition
of an imported property’s constraints to include classekerimporting ontology. To do so
may result in a non-monotonic operation where facts thaewiependent on the domain
and range constraints will need to be retracted as a resattdihg additional definition to
the constraints.

There are many reasons constraints may be left off a paatigubperty. Several of
these reasons, as previously shown, were unintentionasooms, while others are inten-
tional and key to the representation of the ontology. Théler, with respect to this work,

is that there is no way to tell the difference.
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4.2 Domain and Range Generation

What remains to be explored is whether anything can be stditedt the domain and
range constraints that may apply to a given property. Theiwayhich a property is used
provides some hint of what constraints may apply to that @ryp There are two sources
for this information: the class descriptions, specificalig role restrictions in the TBox

and the instance assertions in the ABox.

4.2.1 Generating Constraints from Individual Assertions

Instance assertions are property and type definitions eppd individuals in the
ABox. They are problematic for determining what constsimtay apply. The domain
and range constraints must be extracted from the set of olassbership assertions for
each of the individuals in the knowledge base that are iklayea property. This creates
a two-fold problem: the property assertions on individumésy be missing, and the set of
concepts may be overlapping.

First, there must be individuals in the ABox that are reldtgda property. If there
are individuals, there may be a number of different typeréisses for the individual, some
directly asserted, while others are inferred. Because®fdpen World Assumption, we
cannot conclude that the set of type assertions is compBeteause of the Unique Name
Assumption, there may be two or more individuals that regmeshe same real instance
and the set of type assertions may be distributed acrossimgigidual. With a complete
set of type assertions and property memberships for a simgjl@dual, there needs to be a
method to determine which types of the individual are relébeany one particular property
assertion. This is an open and on-going area of research.

The example shown in Figure 4.1 demonstrates the difficuitly using instance as-

sertions to generate property constraints. Using the ti@sak data, what can be stated
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Cl ass: Person
Cl ass: Vegetarian, subC assOf: Person, ...
Class: Driver, subd assO: Person, drives sone Car, ..

Obj ect Property: drives

I ndi vi dual : Fred
Types: Driver, Vegetarian

I ndi vi dual : George
Facts: drives(SportsCar)

I ndi vi dual : SportsCar

FIG. 4.1. Individuals may have many classes. Using instan@¥tasss is problematic.

about the domain and range constraintsdotves? There are two individual§red and
George. The individualFred is a member of a number of different classes, but does not
have an explicit property assertion involvidgives, SOFred contributes no information

for the constraintsGeorge does have an explicit property assertiondarives, but nei-

ther George nor SportsCar have any class memberships; the reasoner cannot infer any

memberships aside frofhing.

4.2.2 Generating Constraints from Terminological Descripions

Information stored in the terminological assertions (tlB®oX) is more useful for cir-
cumscribing the domain and range for a property. Figurelb®/s a simple ontology defin-
ing three classe$lan, Woman, andFighterPilot; and two object propertiediasGender

anddrives.

Lemma 4.2.1.Let P be a property in some ontology, ang, Cs, . . . C,, be defined classes
in the ontology which are subclasses of a role-restriction,C P.D; involving property
P, whereD; is the object of role restriction. The domain Bfmust subsume the set =

C1uCsyU. . .1UC,. The range of” must subsume the set of objedd,—= D, LID;yLI. . .LIC,.
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Cl ass: Man Equi val ent To Person and hasGender nale
Cl ass: Wnan Equi val ent To Person and not (hasGender nale)
Class: FighterPilot EquivalentTo O ficer and hasGender mal e and drives sone Airplane

Obj ect Property: hasGender
Obj ect Propety: drives

FIG. 4.2. Terminological Assertions for Constraint Genenatio

Proof. Let § andp be the domain and range of some propértyrespectively. Let”’ =

CiuCy ... U0, represent the set of classes which are subsumed by rofestiesis

involving propertyP. Either theC” is the domain forP andd C C’, or it is not. Assume
§ ¢ C'. This implies that for some concept € C’, C; ¢ P.D;,, that is that a concept
is not a subset of its own definition. This implies tligt=£ C;, which is a contradiction.
Therefore, the domain of a properfy must subsume the union of the classes which are
subclasses of a role-restriction involviiy A similar proof usinge and D" will show the

same results for the range of a property. O

Lemma 4.2.1 states that the domain for a property must subshuerset of all classes
defined in terms of a role restriction on that property. Fergkample shown in Figure 4.2
this implies that the domain farasGender is a class that must subsumen, Woman, and
FigherPilot. Lemma4.2.1 and Open World Semantics do not preclude oldmeses that
are not yet represented from being subsumed by the doma@nefrima does not make as-
sertions about the relationships between the classes ¢éiaasThe Lemma simply serves
as a starting point for generation. By momentarily closing world, then a domain and
constraint can be generated from this terminology. The Lardoes not require the gener-
ated constraint to be minimal and does not enforce any fuésteiction on the relationship
of the classes involved in the constraint description.

Lemma 4.2.1 provides a simple method of constructing a doraad range con-
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straint for each property in a given ontology. These are In@tanly constraints possible.
Lemma 4.2.2 shows that there will be either exactly onedtieonstraint, or there will be,

in the worst case, an exponential number of constraints.

Lemma 4.2.2. When constructing a constraint from the available evideincan ontol-
ogy, for any property in that ontology, there is either a $&drivial constraint definition,
or there are an exponential number of possible constraiated on the combinations of

classes in the ontology and connectives used in the spedi@4/b.

Proof. For the first case, for a single, trivial constraint defimticsuch asThing or
Nothing. The property’s domain and range either subsumes evegytiithe constraint is
inconsistent. For the second case, a constraint that caeragiplied to the entire ontology,
the number possible domains is determined by the numbemobit@tions of classes that
the constraint can be applied to. If there arelasses (including all direct and indirect
super-classes) which are defined in terms of the propertly, tiwe standard set of connec-
tives: (U, N, and—), then there ar8" ways to combine the terms to describe the constraint.

Neither will all of these combinations be valid, nor will thbe unique. O

There are three classes that are defined in terms of rolecteEsts onhasGender of
the ontology shown in Figure 4.2. Lemma 4.2.1 shows that ameaih could beMan LI
Woman LJ FigherPilot. This is not the only possible domain. Lemma 4.2.2 shows that
there may be other domain descriptions. For example, andtmain could b&erson L
FighterPilot, which generalizes the descriptionsfaml [Woman. The domain could also
bePerson M FighterPilot, Or evenPerson [ —FigherPilot. The point that is being
made by Lemma 4.2.2 is that exhaustively checking all oféhmsssible combinations is
intractable for large ontologies.

When generating domain or range constraints for a propgesye is either one, many,

or an unknown number of possible constraints. Since theigadlimprove the semantics
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of the model, the trivial case ahing can be removed from further consideration. In each
of the subsequent ontology generation methods, the Opeld Wssumption is suspended
during the generation process. The implication of doing ihito give up the monotonicity
property of inference and shift the reasoning process tora & default reasoning. This
will be explored in more detail in Chapter 5.
Three different constraint generation approaches will iseu$sed in the following

sections, including:
e Disjunction,
e Least Common Named Subsumer, and

e Vivified Subsumer.

4.3 Disjunction Approach

One method of generating constraints relies on the creatithe disjunction of all
dependent classes. This generation method is fast anckeffiti tends to have very weak
reasoning results and may even create serious performaoigieims for reasoners.

An algorithm for generating constraints by disjunctionh®wn in Figure 4.3. First,
the algorithm enumerates all of the properties of an ontolégr each property, the algo-
rithm generates a list of role restrictions. For each rosrigtion, the subject and object
of a role restriction is added to the domain and range lisgpeaetively. After each role
restriction is processed, the Least Common Subsumer (L<C&mputed. Because OWL
supports the disjunction of concepts, the LCS of a concegatrg®ion is the disjunction of
its subsumers (Baader & Nutt 2003). Thus, a disjunctiondistoncepts is added to the

property’s definition as a domain or range constraint.
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This algorithm runs in time that is polynomial to the numbépooperties and re-
strictions. Letp be the number of properties, ande the number of restrictions, then the

growth-class can be characterized’s#®r) to maintain the content of the lists.

GENERATE-DISJUNCTION(O)
1 P < ENUMERATE-PROPERTIESO)

2 forpeP
3 do
4 R «— ENUMERATE-RESTRICTIONS O, p)
5 b —{}
6 p—{}
7 forre R
8 do
9 if subject[r] € &
>> Add subject of r to domain
10 then
11 d = 6 U subject|r]
12 if object[r] € p
>> Add subject of r to range
13 then
14 p = p U object|r]
15 domain|p] < owl : UnionOf (6)
16 range[p] < owl : UnionOf (p)
17

FiG. 4.3. Disjunction Generator

4.3.1 Disjunction Examples

Using the disjunction approach may generate useful cantgrarhe problem is that
disjunctive statements are frequently of little use forrmsoner. Knowing that some class

subsumes the disjunction of a set of classes does not allovetsoner to draw many more



B O © 00 N O U & W NP

P

62

Class: A Subd assOf: Thing, P sone C
Class: B Subd assOf: Thing, P sonme C
Class: C Subd assOf: Thing

bj ect Property: P
Domai n: Thi ng Range: Thi ng

I ndi vidual : J
I ndi vi dual : |
Facts: P(1,J)

FIG. 4.4. Example Ontology. Example where disjunction of craists may be useful.

conclusions. There are times where the disjunction canigedhie necessary information
to draw new conclusions, such as that shown in Figure 4.4.

This example shows an ontology with three classes in a sifiptarchy. There is a
single object property, which has no domain or range constraint. Claas@sdB are both
defined as subclasses Tifing, and are defined with a role restriction that there is some
individual who is the object af. Two individual instances are also defin@ds the subject
of propertyP with J as an object.

A reasoner will (correctly) fail to find any additional fa@bout this simple ontology.
The situation changes after the application of the disjonctonstraint generator. For
propertyP, the algorithm will construct a domain afu B, and a range of. A reasoner
will now classify J as an instance of clags The reasoner still does not classifyas a
member of any named class, it belongs to a sub-class of thmdi®nA UB. If there were
an assertion thatbelonged to a class that was disjoint from either B, then the reasoner

would be able to close the disjunction.
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4.3.2 Disjunction Discussion

The symbols used in this example were chosen to be vaguenédade domain and
range constraints clearly changed the model of the ontol®dfg generator cannot know
whether this change is a meaningful modification to the agplor not. Can humans do
better by looking at the symbols?

Suppose represents the concepeaches C representsstudenf and A andB rep-
resent professot and “adjunct” The modification of the domain and range would be
meaningful in this case. With the domain and range congsdins inferred to be some
form of a teacher andis inferred to be a student. This is not the only interpretatf this
isomorphism of symbols.

Another problem with this method of ontology generatiorutessfrom the way tableau
reasoners handle disjunction. Tableau reasoners werglsbsim Section 2.5. Disjunction
introduces a type of non-determinism that is handled udieg+ Urule, which creates
new potential models from each term in the disjunction. Toe-determinism is resolved
through search and backtracking through each of these sotlet resources required for
the reasoner increases exponentially with the size and eudaildisjunctions encountered
by the reasoner. This is demonstrated in Figure 4.5.

The statistics in this figure were generated using a stoichgistulation with param-
eters chosen to generate reasonable sizes for the modeleaEbrdata point, a num-
ber of classesV., object propertiesVp = % and individualsN; = 2N~ where cre-
ated. For each property, the domain constraint was set tsjandtion or intersection of
a random number of randomly selected classes. The expeeedfsthe domain lists,
E(|Dom(Pi)|) = 3+/Nc. Individuals were assigned a random number of property as-
sertions with probability?»; = .1Np. The results were computed f60 < No < 300.

The y-axis is a logarithmic scale. The time required for reasgromer the models for
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FIG. 4.5. Reasoner comparison of disjunction and intersection

both types increased exponentially (linear on a log-axaphyy, but the time required by the
disjunction was several orders of magnitude greater thath&intersection.

This illustrates a problem with this generation strategys the number of role-
restrictions involving a property increases, the numbeteoms in the disjunction will
increase linearly. As the number of properties with largguict constraints grows, the
time and space resources for the reasoner will grow expiahgnt

In conclusion, the disjunction method of generation is @dst and simplest gen-
eration method described here. It generates disjunctiostrints from each set of role
restrictions on a property. These disjunction clauses ndaylitile additional information.
The current generation of tableau reasoners have diffiatttylong chains of disjunctions

and their performance degrades exponentially.

4.4 Least Common Named Subsumer

The Least Common Named Subsumer (LCNS) approach to gemgcainstraints for
a property operates by finding the named concept that is & é®mmon subsumer for

the set of role-restrictions. The key difference betwees @pproach and the disjunction
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generator of Section 4.3 is that the disjunction generatowad an unnamed common
subsumer while this approach selects a named subsumeredlieament to select a named
subsumer is an attempt to improve on the results of the puewdasjunction algorithm by
removing the disjunctions and the non-determinism thegtera the reasoner.

There is a trade-off from the “exact” LCS of the previous aitjon to the “named”
concept used by this approach. The LCS created in the digpanalgorithm is an exact
representation of the least-common subsumer of the seinakpts. The named subsumer
represents an approximation of the subsuming set of cosickghould be noted that while
the disjunction algorithm created an exact representatidine least-common subsumer it
did not necessarily create the most exact definition of timstraint. For example, suppose
there is a classA with n direct subclasses. Suppose the LCS for a conceptAyas
Ay ... A,, where for eachd; C A. The classA; was missing. A more concise, and
ignoring open world semantics, description wouldbe A;.

An algorithm which uses the LCNS to generate domain and reogstraints is shown
in Figure 4.4. The algorithm first determines whether thetéxj constraint subsumes the
current role’s subject or object. If it does not, the LCNScaithm is used to find the least
common named subsumer for this pair. The domain and rangapaeged after all roles
are processed.

The reasoner is the determining factor in the performandb@fCENERATE-LCNS
algorithm. The algorithm calls on the reasoner to compueuh taxonomy of the ontol-
ogy O. The algorithm makes repeated calls to the reasoner to sudign relationships
between concepts. L€YY, represent the number of classes in ontolagyN,  represent
the number of role-restrictions with propegtyandN, represent the number of properties
in O. Let Nr represent the number of calls to the reasoner’s subsumgtiecking proce-
dure. For eachV, classes' € O there are three subsumption checks made on line 4 of the

LCNS algorithm to compute whethér subsumes the concept descriptions. Equation 4.1
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GENERATE-LCNS(O)
1 P < ENUMERATE-PROPERTIESO)

2 forpeP
3 do
4 R «— ENUMERATE-RESTRICTIONS O, p)
5 0«— L
6 p— L
7 forre R
8 do
9 if subject[r] € &
> Get current LCNS
10 then
11 0 «— LCNS(O, 6, subject[r])
12 if object[r] € p
> Get current LCNS
13 then
14 p — LCNS(O, p, object[r])
15 domain|p] < 0
16 range[p| — p
17

FiG. 4.6. Least Common Named Subsumer Generator

shows the total number of subsumption checks made by thethigo

Np Nrp

(4.1) Ne =) > 3N,

i=1 j=1

There will be a polynomial number of calls made to the reasssabsumption check-
ing algorithm, and there will be one call made to the reassmassification algorithm.
Let R- and R.q.ssi1y represent the complexity for the reasoner’'s subsumpti@ckihg

and classification procedures respectively. The totaltime-of the algorithm will be in
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LCNS(O, A, B)
1 LT
2 for C € classes(O)
3 do
4 fACC & BCC & CCL
5 then
> C subsumes both A and B and is more specific than current LCNS
6 L—C
7
8 return L

FIG. 4.7. Compute Least Common Named Subsumer

O(Reiassify + NcRe). As discussed in Section 2.5, the time required by the reaswiti

depend on the expressivity of the description logic beireglus

LCNS Examples Figure 4.4 described a simple ontology. The disjunctiooidigm
created a domain for properyof ALIB and the reasoner was not able to infer any additional
type assertions for individual. The LCNS algorithm will find the least-common named
subsumer oA LI B. In this simple ontology, there is only one named conceptdhbsumes
bothA andB namely:Thing. Surprisingly, for this simple example there are no diffees
in the types inferred for individualsandJ.

Figure 4.8 shows a more complex class hierarchy. The dldssa super-class to
classegB1,B2,...,Bn). Using the disjunction algorithm of Section 4.3 would cesahn
element disjunction ad1 UB2U. . .UBn. If the domain of were to be set to this disjunction
the reasoner would provide little additional informatidvoat individual/ except that it
was one of those classes. As the size of these disjunctioresiges the time and memory

costs of the reasoner will increase. In spite of this longudistion the reasoner is not able
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Class: A SubC assO: Thing

Class: Bl SubC assOf: A, P sone
Class: B2 SubCl assOf: A, P sone
Class: B3 SubC assO: A, P sone

O 000

Cl ass: Bn SubC assOf: A P sone
Class: C SubC assO: Thing
Class: D EquivalentTo: P sone C

Obj ect Property: P
Donei n: Thing Range: Thi ng

I ndi vidual : J
I ndi vi dual : |
Facts: P(1,J)

FiG. 4.8. Example Ontology. Example where LCNS constraints bheayseful.

to infer any additional type assertions for individaal

The situation is different with the LCNS-based generattie fiange of will continue
to beC, but the domain oP will becomeA. Using this new fact the reasoner will conclude
that individualI is an instance of clags Because the disjunction is replaced with a simple

type assertion the performance of the reasoner will be ingatover the previous example.

4.4.1 LCNS Discussion

The LCNS-based generator defines the domain and range aiotsto be the least-
common named subsumer. The LCNS is the most specific namesithiat subsumes a set
of classes. The LCNS of a concept description can be compytad algorithm that makes
a polynomial bounded number of calls to a reasoner. The theeraplexity depends on the
reasoning costs and expressivity of the Description Lobine LCNS approach represents a
trade-off in specificity and run-time performance from tigguhction-based approach. For
many practical applications the LCNS-based approach wilpnovide much improvement
over the current default domain approach.

Figure 4.4 demonstrated the trade-off in specificity. Beeathe domain of was
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A U B, the least-commonamedsubsumer of the domain @fwasThing. In the ontology
of Figure 4.8, the LCNS-based approach assigned the domd@nabe simply class.
The domain o will be a class that is not defined in terms of a role-restritinvolving
propertyP. Becauset is more general than the sub-classes that are defined in tdrms
a role-restriction orP there is a possibility that some sub-classAafioes not include a
restriction onP. The LCNS algorithm selected a class definition that was ngereeral
than the individual defining properties. In effect, it trddgpecificity for performance.
The specificity as compared to the more accurate statemehedfCS of the defining
properties. The performance is measured in the time andmes®required be the reasoner
to compute additional inferred facts about the individwett® fill propertyP.

The LCNS algorithm has a problem in how it generalizes acrogdevel branches
of the inheritance tree. When the least-common subsumet imalsde two branches of
the inheritance tree whose only common ancestthisg, then the only common named
subsumeri§hing. The disjunction approach effectively handles this sitraby including
both sets of classes in the disjunction. If the length of thsgunction is small then the
disjunction algorithm may be more informative than the LGN &his situation.

In certain instances the LCNS approach to generating doararange constraints
represent an improvement over the disjunction approach.LUNS is able to summarize
concept descriptions by finding the named concept that saessome set of classes. The
result is a concept description made of exactly one concapen There is a trade-off in
specificity and performance. The major drawback is that t6&l& may over-generalize
and discard too much information. There are times when thR$% @& preferable, and
others when the disjunction approach is preferable. Thesestmay occur in the same

ontology.
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4.5 Vivified Subsumer

The vivification approach is proposed as an alternative eadibjunction and LCNS
based approaches. The approach is designed to avoid thsttorgs of disjunctive clauses
while avoiding the over-generalization of the LCNS apptoathe concept of vivification
describes removing disjunctions with the least commonwsules of the disjunction (Cohen
& Hirsh 1992). For examplé&ianist UOrganist could be vivified into the least common
subsumer oKeyboard — Player.

The vivification approach proposed used here takes a dispunand, using the class
structure of the TBox, summarizes the term into a definittoat teplaces subsets of dis-
junctive terms with a common direct super-class. The gadal &rive at a description of a
domain or range that includes most of the original detaillevhvoiding the long and often
meaningless disjunctive strings.

The original algorithm, proposed by Cohen, requires cotepdeibsumption of the
children by the parent to trigger an absorption of childr&éhe algorithm presented here
allows for partial subsumption of the children. The degmevhich this algorithm will
accept partial subsumption is controlled by the paramétengime.

The vivification approach initially generates disjunctateings for a constraint and
then replaces subsets of concepts with subsuming supeegtsnuntil the constraint is
vivified. The process of replacing a subset of concepts wiltalledabsorptionwhich is

defined in the following pair of definitions.

Absorption A subset of named concepts in a disjunction may be repladbeyfshare a
common and direct named super-class; and they must meabs#oeption criteria If any
concept which is part of the subset to be absorbed has moretieadirect super-class it is
not removed from the disjunction unless each of its supessds is subsumed by a member

of the disjunction list.
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Absorption Criterion Let L be a disjunctive list of concepts to be summarized, And
L be a subset of. to be absorbed by concept description Letm = |A| andn be the
number of direct subclasses of. If m > (n then the absorption is accepted, or it is
rejected otherwise. The parameterepresents a hyper-parameter, with valties 5 < 1,

to control the degree of concept inclusion necessary tgpa@reabsorption.

The absorption criterion represents a heuristic to govem &ggressive the vivifica-
tion process will be in summarizing concept descriptionge Triterion is based on the
proportion of sub-classes that are actually included iHigtéo be summarized. The intu-
ition of the heuristic is based on the fact that informaticeyrbe incompletely specified in
a large ontology. If a sufficiently large proportion of subsses is present in a list to be
summarized then it is likely that a description which inasdnly the super-class will be

sufficient for reasoning.

ABSORB(L, A, C, )

> L is disjunction list,A C L, classes to be summarizéd> 3 > 1 is criteria
1 m « size[A]

> All elements inA share same super-class

2 B < FIND-DIRECT-SUBCLASSES(C)
3 n « size[B]

4 ifm > 06n

5 then

6 LI'=L-AUC

7 else

8 L'=1L

9 return L'

FIG. 4.9. Absorption Pseudocode



72
4.5.1 Vivification Algorithm

Figure 4.9 shows the pseudo-code for the absorption protesé represent the list
of properties to be vivified. Ledl C L be a list of terms that share a direct super-class
C, and are to be conditionally absorbed. l&tepresent the absorption criteria. Given
L, A, C and g algorithm ABsoRB will determine if the absorption criteria is met. The
algorithm computed, the set of direct-subclasses ©f The absorption criteria is met
if |C|/|D| > (. If the absorption criteria is met, then the absorption ifgened and
L — L — AUC. If the absorption criteria is not met thénis left unchanged.

Figure 4.10 shows the pseudo-code for a process that wifinavgiven list of con-
cepts. LetL represent the list of properties to be vivified aidepresent the absorption
criteria. The algorithm proceeds by building a mapping afsks that are ih and their
direct sub-classes (stored in arrdysand S respectively). This mapping is used to select
a member,A € L which should be considered for absorption. Aftélis selected, the
ABSORPTIONalgorithm is called (see Figure 4.9) to perform the absorptif the absorp-
tion occurs then the arrays andS are modified to include the new absorbing clasand
L is updated to reflect the new state of the concept description

The final procedure is the actual vivification-based congtigenerator. The code is
largely the same as the disjunction-based generator. Tiidzste domain and range lists
are built up from the disjunction of the role restrictioneelithe previous approaches. The
main difference occurs in the final two lines where/\fY-CONCEPTIs used to perform

the summarization.

4.5.2 Vivification Performance

The vivification algorithm presented uses the taxonomy efkimowledge base to de-

termine direct sub-class relationships. It does not makesabsumption checks as the
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force L

do

for s € direct-superclasses|c]

do

done «— false
while done = false

do

Cli] < ¢
Sli] « s
1+—1+1

done «— true
A «— SELECT-NEXT-SUBSET(C, 5)
L' — ABSORB(L, A, )

if L/ #
then

L

DELETESUBSET(A, C, S)
for s € direct-superclasses|S]
do

Cli+1] < S
Sli+1] «s
done «— false

FIG. 4.10. Vivify Concept pseudocode

73
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GENERATE-VIVIFICATION (O)
1 P < ENUMERATE-PROPERTIESO)

2 forpeP
3
4 R «— ENUMERATE-RESTRICTIONSO, p)
5 0 — 1
6 p— L
7 forre R
8 do
9 if subject[r] € &
>> Add subject of r to domain
10 then
11 d = 0 U subject[r]
12 if object[r] € p
> Add subject of r to range
13 then
14 p = pU object|r]
15 domain[p] < VIVIFY-CONCEPT(ow! : UnionOf(9))
16 range[p] < VIVIFY-CONCEPT(owl : UnionOf(p))
17

FiGc. 4.11. Vivification Based Generator
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LCNS algorithm did. The results of vivification do depend onether the taxonomy was
classified prior to invocation of the algorithm or not. If treasoner is not used to classify
the taxonomy then any inferred sub-class assertions wilba@vailable to the algorithm.
This may result in differences in absorption acceptanceden classified and unclassified
taxonomies. Despite these differences, the algorithnif dees not require the use of the
reasoner, either before or after to operate.

The performance of the algorithm depends on the number s§eta properties, and
restrictions. Thecener at e- Vi vi fi cat i on algorithm creates a list of restrictions on

that property, and invokes thé vi f y- Concept algorithm twice for each property.

Theorem 4.5.1.The vivification algorithm runs in polynomial tim@, N, max(N,, N.?))

whereN,, N,, N, represent the number of classes, restrictions and progerti an ontol-

0ogy.

Proof. Let N, N,,, N, represent the total number of classes, properties andct&sis in
an ontology respectively. The runtime of algoritibsor b is in O(N,) due to the cost
of finding the direct-subclasses 6f The algorithmVi vi f y- Concept makes at most
N, calls toAbsor b. This can be seen from the case wh&gd ect - Next - Subset
always selects one class from the ontology and replaceghtavsingle clasg’. If C'is
already in the listZ, it is not added again. Therefore, the most times this wiltaked

is bound above by the number of classa&$, Thus,Vi vi f y- Concept is in O(N,?).
The algorithmGener at e- Vi vi fi cat i on has two parts, the first part builds the list of
restrictions and the second calls the vivification algonitbn the domain and range lists.
In some degenerate ontology there could be a dispropoté@maount of restrictions than

properties. Because of thiSener at e- Vi vi fi cati onisin O(N, max(N,, N.%)) O

4.5.3 Vivification Discussion
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Class: A SubC assO: Thing
DisjointWth C

Class: Bl SubCl assOr: A, P sone E

Class: B2 SubClassO: A P sone E

Cl ass: B3 SubC assOf: A

Class: C SubC assO: Thing
DisjointWth A

Class: D1 SubClassOr: C, P sone E

Class: D2 SubClassOr: C, P sone E

Class: D3 SubC assO: C

bj ect Property: P
Domai n: Thi ng Range: Thi ng

I ndi vidual : J
I ndi vi dual : |
Facts: P(1,J)

FIG. 4.12. Example Ontology. Example where vivification of doaisits may be useful.

Figure 4.12 demonstrates the ability of the vivificationosithm to balance specificity
for performance. The disjunction approach generates a itdioreP of B1 U B2 UD1 U D2.
This accurately reflects the fact that the four classes eahdrestriction o. The LCNS
algorithm generates a domain ®of Thing. This is due to the disjointness of clasges
andc and the fact that the disjunction cross over this disjoiahish of the inheritance tree.
The vivification generates a summary domainAafl C. This domain statement is more
concise than the disjunction result and it preserves at s&ase of the information lost in

the over-generalization of the LCNS result.

4.6 Conclusion

This chapter introduced the concept of constraint geraerdtr properties in OWL.
It is important to generate property constraints when theynaissing to and validate the
integrity of existing constraints. As described in Sectoh, there is more information for

constraint generation in the terminological definitioqedfically class restrictions, thanin
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instance assertions of the ontology. This chapter intredseveral algorithms to generate
property constraints from the terminological definitioapmely: disjunction, least-common
named subsumer, and vivification.

A simple disjunction of concepts can be created for each efdibmain and range
constraints from the restrictions used to define the classia® ontology. Long chains of
disjunctions lead to weak generalization, inability toateeuseful information, and ineffi-
cient reasoning. The Least-Common Named Subsumer attématisiress this weakness
by selecting classes defined in the ontology. This approawtistto over-generalize. The
over-generalization of the LCNS approach does avoid theafagasoning with disjunc-
tions but it also fails to add useful information. The vivé#ton algorithm was developed
as a trade-off between the other two approaches.

Domain and range constraints can be generated from thenelogical statements
in the ontology. The structure and quality of the generatatements depends on the
completeness of the restrictions present in the termiryodogl in the algorithm selected.
The assertions inferred from the addition of these conggalepends on the ability to
create constraints that are not so specific as to become igjngctive chains of statements
that prevent the reasoner for picking any one of them. At #raestime, a competing
goal is to ensure the constraints are not so generic as tort@sed : Thing or other top-
level concepts that are likely already present in the assdlist for the individuals which

participate in the properties.



Chapter 5

DEFAULT REASONING EXTENSIONS FOR OWL

Description Logics, which were introduced in Chapter 2,atgoe of logic that trades
expressibility for decidability, completeness, and momnatity. The memory and time re-
guirements of a reasoner can be controlled through carefettson of the types of con-
cepts that can be expressed in a particular DescriptioncLdgefault rules are a type of
concept that is not included in most Description Logics.opding default rules to be part
of the reasoning process often leads to non-monotonicigfaillt facts may not always
hold with specific instances. It is the process of recongitimese clashes that frequently
lead to undecidability and complications reconciling tinewledge base.

In many cases algorithmic knowledge generation is a typefafudt reasoning which
invokes the problems of non-monotonicity. The algorithrasaibed in Chapter 4 is an
example of a knowledge generator. In effect the computedaitoand range constraints
are equivalent to default statements about the constraifitese default statements are
consistent with the current set of facts in the knowledge limg they may not hold given
future facts. The order in which the ontology is built mayealthe constraints that are
created because the default statements depend on the fstatekmowledge base when
they are invoked. As future facts are added to the knowledge they may conflict with

earlier default constraints. These conflicting statemenist be reconciled to return the

78
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knowledge base to a consistent state.

This chapter presents a technigue to manage the retradtfacte derived from de-
fault assertions. The defaultness of a statement is progada any derived facts. The
result of this operation is that the modified DL reasoner béllable to keep track of which
statements that were added or inferred from default knaydedJsing this knowledge,
the reasoner can contract the knowledge base to restorestamty. The result is a rea-
soner that provides limited default reasoning, maintaiesidhbility, completeness, and
efficiency.

The remainder of this chapter presents a strategy for miodifthe existing OWL
reasoner. Section 5.2 presents modifications to the OWloneago implement the con-
traction operation. Section 5.3 shows the correctnessoafiproach. Finally, Section 5.4

describes modifications to the OWI language to support {hesation.

5.1 Introduction

The constraint generation operation described in Chapisrndt compatible with
monotonic reasoning. The process of adding general claission axioms (GCI), state-
ments that describe class membership, from existing fadtsel knowledge base is equiv-
alent to a default rule regarding the domain and range of pgotp The generator creates
constraints based on the information that is present, atitha. However, new information
can be asserted about the universe of discourse that cmt$rétte generated constraints.
Other facts may be inferred from the generated constraimdsaalded to the knowledge
base, making it difficult to resolve conflicts.

Figure 5.1 shows an ontology with a simple class structwleiging classes, B, and
C. Each of these classes is a sub-clasghahg. There is one property, without domain

and range constraints. There are two individuadsd J, that are related through property
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Class: A Subd assOf: Thing, P sone B
Class: B Subd assOf: Thing
Class: C Subd assOf: Thing

Obj ect Property: P
Donei n: Thing Range: Thi ng

I ndi vidual: J
I ndi vi dual : |
Facts: P(1,J)

FiG. 5.1. Example Ontology. Example where default reasoniegtes contradiction.

Class: A Subd assCOf: Thing, P sonme B
Class: B Subd assOf: Thing
Class: C Subd assOf: Thing

Obj ect Property: P
Dommi n: A Range: B

I ndi vi dual : J
Types: B

I ndi vi dual : |
Types: A
Facts: P(1,J)

FIG. 5.2. Example Ontology. Example of Figure 5.1 after reasgni

P. ClassA is defined in terms of a property restriction on propértyror propertyp, any of
the generation procedures described in Chapter 4 crea@wair ofA, and a range o8.
The reasoner would then conclude that individuadsd J were members of classe&nB
respectively. The result of classification is shown in Fegbr2.

Now, suppose new information is added to the knowledge bBse.restrictionC C
PsomeB is added to the first ontology shown in Figure 5.1. No inforiorats lost as a result
of this process and the ontology remains consistent. Rénadlthe second ontology shown
in Figure 5.2 was the result of applying a default rule. Adgline same statement to it will
result in the reasoner concluding that clésis a subclass ofi. This is because the domain

for P states that every individual that fills the restrictizsomeB must be ar. If it is not
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Class: A Subd assOf: Thing, P sone B
Class: B Subd assOf: Thing
Class: C Subd assOf: Thing

Obj ect Property: P
Donmi n: A Range: B

I ndi vidual : J
Types: B

I ndi vi dual : |
Types: A
Facts: P(1,J)

FIG. 5.3. Example Ontology. Example of Figure 5.2 after new imeidded.

the case that is a subclass of then the old default domain and range must be revoked
and so must the inferred facts that individuasndJ are instances df andB respectively.

Recomputing the default domain and range for propergsults in the domain being
A LIC. Invoking the reasoner on the modified knowledge base willaglol any new facts
about individuall. The previously type assertions had to be removed becaasiethult
facts that allowed for their inference was also removed. Kewause of the additional facts
added to the knowledge base there is a reduction in the knagts &bout the knowledge
base.

In each of these cases, the application of the constrairrggan algorithm changed
the semantics of the ontology. Because most Descriptionckaupport monotonic rea-
soning, there is no defined operation to retract facts whegedd on default beliefs. The
result is that knowledge that was inferred from defaultddsliwhich were later revised,
remains in the knowledge base. If the order of operation®aéered, as this example
demonstrates, the results of reasoning with default ridekide very different.

The preceding automated process is different from a maewuadion to the ontology.
Suppose the author of the ontology makes a revision to thelamyt that changed the

semantics of the world. There is a presumption of ratiopalithe actions of the ontology’s
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developers. If the ontology is a description of some worlddeipthen that ontology is
expected to be consistent with that world model. If thereclw@nges that are inconsistent
with that model then the developer will make the necessargifications to return it to a
consistent state.

The source of a change in an ontology makes a big differentreregpect to mono-
tonicity. If a change is initiated by a human and there is aymgption of rationality to
that change, then it is fair to assume that the human willyapiphnges that are consistent
with the world being modeled. When there are changes the hwaxa make appropriate
decisions to correct any errors that may occur. When a chiangéiated as a result of a
conflicted default rule then an algorithm must make asswnptabout the world without
being able to observe the full state of that world. The atbami cannot possibly know
more about the world than what is currently asserted in treevledge base. As a result
the reasoner rules will be created and applied that are ft@ensiwith the present state but

which may conflict with statements that will be entered infiltere.

5.1.1 Managing Non-Monotonicity

The assertions contained in a description logic knowledtge brestrict the possible
states of are universally true in all possible worlds. Thetusion of default rules and rea-
soning created assertions describing the present stalte efdrid and which may not be
consistent in all future worlds. There are now two differgmies of assertions with differ-
ing values of commitment associated with them. One set agecban external evidence
and asserted by the ontology’s developers and the othef astertions are believed true
based on the internal evidence in the ontology.

Using default rules to derive new knowledge results in a fat teast two plausible
worlds. One where the set of facts derived from the defaldtsrbolds and one where it

does not. When the modeling language allows open, increahéascriptions of the world
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then there exists the potential for future assertions tehcigith previous default beliefs.
Non-monotonic systems address these potential clashes.

The constraint generation procedures defined in Chaptezatecconstraints that are
believed to be correct and accurate. These constraintsmmagdiately clash with existing
facts in the knowledge base or may clash with future facts éfther have not yet been
derived or entered. There is a difference between a claslenérgted knowledge and
asserted knowledge.

If there is a clash between generated and asserted knowtbdgethe generated
knowledge is immediately assumed to be inconsistent. Ifggreerated fact has not yet
been added to the knowledge base, then the operation isdeoedia failure and the state
of the knowledge base is unchanged. If a new asserted faftict®mith an existing gen-
erated statement, then that statement and any statemfamntedhfrom it must be removed
from the knowledge base. This is the basis of a contracti@matjpn was introduced in

Section 2.6.

5.2 Modifications to the Reasoner

Section 2.1 introduced the concept that Description Lognesuding OWL, are based
on tableau reasoners. Tableau reasoners presently usaswaypes of production rules
to reason and answer queries: unfolding and transformatil@s (see Section 2.5). Un-
folding replaces concept references with their definitidnmansformation rules derive new
facts from existing statements in the knowledge base. Thexmesses are defined for the
traditional monotonic Description Logics and do not suppioe desired contraction oper-
ations described in the previous section.

A contraction will be initiated to resolve some clash in a\kiexlge base. In order to

complete a contraction request, the reasoner must be af@mtave any default statements
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and any statements derived from those default statemeots thie knowledge base. |If
the clash remains after a contraction then it remains sokly asserted statements and
is beyond the scope of the default reasoning presented A#eg.contraction, the default

generation procedure may be reapplied to recreate the rules

Definition Default Descriptor is a descriptor which indicates thatdeshent(, is either
added as a result of a default rule, or is derived from a detatement. A clas€¢’, is
equivalent to its default assertia@rt’, C = C?. The descriptor only notes the origin of
the statement and does not alter the semantics of the désarid he default descriptor
will propagate through inference, such that for any derisledsE, which was derived in
whole or in part from a default class, will be added to the kizolge base with the default

descriptor,£.

A default descriptor is attached to any statement that i®a@dd the database as a
result of a default process. The default descriptor is usetifterentiate statements added
by a default rule from those that are asserted through th@ald®WL process. This is
just the first step to supporting a contraction. In order tplement a proper contraction

operator those statements that were inferred from the rechshatement must be retracted.

5.2.1 Default Descriptor Propagation

Without modification to the reasoner, the inference procedvll use default state-
ments and asserted statements equally. The result is feateid facts will be added to
the knowledge base. These new facts may be derived front ei¢ffi@ult or asserted state-
ments. In some cases, there may be long chains of depensgldéinkiag the default facts
to their final statements. The unmodified reasoner will rtKrthe origin of those state-

ments that were derived from default statements from thHuestenere not. Contracting the
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—n-rule If A contains(C; 1 Cy)(x), but it does not contain botf; (x) andCs(z), then
.A/ =AU {Cl(flf), CQ({L')}

FiG. 5.4. A tableau reasoner transformation rule.

default statements without also pruning the dependergrataits will defeat the purpose
of contraction and leave unsupported facts in the knowlédge.

The first proposed modification to the reasoner is to inclyvdgraness of the default
descriptor into the inference procedures. As facts areredethe default descriptor will
propagate to inferred facts. Figure 5.4 shows one of thestoamation rules commonly
used to build a tableau reasoner. These consistency pirggéransformations typically
have an antecedent and a consequent. In this rule, the datgds ‘If A contains(C; M
C5)(x) but does not contain both; (x) andCy(x), and the consequent is ‘Then adgl(x)

andCy(z) to A

Default Propagation Rule During inference the reasoner applies an transformatiertou
the tableau. If any part of the antecedent has a defaultigescthen the default descriptor

will propagate to the consequent when it is added to the @able

5.2.2 Existential Verification

The tableau transformation rules define the criteria thagtrba met before the rule
can be applied to augment the knowledge base. Figure 5.4sshiowxample of a trans-
formation rule for a tableau reasoner. A complete versionie Description LogicALC
appears in Figures 2.4 and 2.5. The existential check thatrdmes whether an assertion
is present in the knowledge base is a common criteria in eveeyof the rules. The existen-
tial check will also be used when constructing a union listaficepts to prevent duplicate

concepts from being entered into the knowledge base.
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Without modification to the existential verification step tteasoner will treat default
statements and asserted statements equally. For examplgse the knowledge base
contains a concept descriptidterson? which was derived from a default rule. During
inference the reasoner infefgrson, a non-default concept description. Default statements
represent information that has not yet been entered int&ribe/ledge base. In this case,
the information that was previously only known by defaulhiferred by the reasoner. The

reasoner should replace the weaker default fact with tl@gér non-default fact.

Concept Strength Let C' and D be two concept descriptions which describe identical

classes, then one of the following concept strength reiahigps must hold:
e C' > Dif C'isnotdefault and is,
e (' = D ifboth C'and D have the same default descriptor,
e C' < Dif Cis default butD is not.

Using the definition of concept strength suggests that a &readncept should be
replaced by a stronger concept. Using the example abovstrareggth relationship between
the two classes isPerson = Person?. Modifying the existing check of the reasoner
to obey theContains Rulewill control the activation of the transformation rules. ibg
the modified rule will prevent the activation of a rule whem #xistential check in the

antecedent of the transformation would replace a strongesept.

Contains Rule The contains(X ) predicate will be modified to return true if and only if

one of the following conditions is true:
¢ the knowledge base does not contairat all, or

¢ the knowledge base contains a clags,which describes the same classXsand

X =<Y.
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If a rule is triggered and a new concept is inferred then thecept must be added
to the knowledge base. If the existential check of the ti@mnsétion rule ignored weaker
members of the knowledge base then the new, stronger idferesmbers must be added
to the knowledge base without creating duplicate statesnéifite goal is to avoid creating
situations where the same concept is present as a defaulibandefault fact. To preserve

uniqueness the union operator will be modified using themunide.

Union Rule Thewunion operator will be modified to replace an existing term in thewh
edge base if the term being added describes the same classsarmhger than the term in

the knowledge base.

For example, suppos€ B = A(x) UB4(z)U(C(x)NB(z)). The reasoner selects the
expressionfC'(xz) U B(x)) for transformation. The reasoner checks if KBitains(C(x)),
it does not, sdkB = KB U C(x). Next the reasoner checks if KBntains(B(z)). In
this case, it does, bug(z) = B(x), soB(X) will be added to the KB using the modified
unionoperator, replacing?(x).

The Default Propagation Rule, Contains Rule, and Union Rréghe only necessary
modifications to the tableau reasoner to support this lanviersion of default reasoning.
These rules allow the reasoner to infer default facts andawate the defaultness of those
facts through the inference process. They also favor néeuttfacts that are otherwise
equivalent to existing default facts. In doing so the knalgke base will tend toward elimi-

nation of default facts.

5.2.3 Contraction Triggering

If the knowledge base enters an inconsistent state duraspreng then the unmodi-

fied reasoner simply notes the cause and indicates the istemisstate to the caller. The
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presence of default statements in the knowledge base isrtpk there are now two possi-
ble types of clashes in the knowledge base, clashes thahdemedefault statements, and

those that do not.

Lemma 5.2.1.1f a knowledge base becomes inconsistent and the clashbetween two

non-default statements then the clash tsLge clashand is not caused by default facts.

Proof. Statements in the knowledge base are either default or hetinference procedure
propagates default descriptors to all statements thatemeed from other default state-
ments. Default statements are replaced with equivalentdedewlt statements when they
are asserted or inferred. Every statement that is infena@d o default statement is also
a default statement. If a statement is not a default stateinisreither in the set of direct

assertions in the knowledge base or it was inferred fronrotbe-default statements. If the
inference rules are consistency preserving (see Sectod)2hen the clash is a legitimate

clash and not due to the presence of default statements. O

If the clash is arue clashthen there are errors in the non-default facts and recon-
ciliation is beyond the scope of this work. If the clash is do@lefault statements, then
the default reasoner should restore consistency. Lemma2 ghdws that contraction will

restore consistency to the knowledge base.

Lemma 5.2.2.A knowledge base containing a clash that is nou clastcan be returned

to a consistent state by retracting all default statements.

Proof. Given a knowledge base that contains a clash that is moealash then all default
statements can be revoked. The statements to be removea@ cdentified using default
descriptors. Because the clash is ndtuee clashthe statements that caused the clash are

no longer present in the knowledge base. The knowledge basela consistent. [
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Class: A Subd assOf: Thing, P sone B
Class: B Subd assOf: Thing
Class: CdisjointWth(A)

Obj ect Property: P
Donei n: Thing Range: Thi ng

I ndi vidual: J
I ndi vi dual
Facts: P(1,J)

FiG. 5.5. Example Ontology.

Contraction can be triggered by the reasoner based on theahtevidence of the
cause of a clash. A clash is detected by the reasoner whenhgbedrates an inconsistent
statement. For example, suppose the Abox includes a states{e) for some individual
x. If the reasoner generates a statemefit,x), then there is a clash in the knowledge
base. Lemma 5.2.1 states that the reasoner can stop anttrepoause of the inconsis-
tency when the cause are two non-default statements. Wheslash is caused by default
statements the reasoner can invoke the contraction operttiretract all default facts.
Lemma 5.2.2 states that the resulting knowledge base wiisbof only default facts and

will be consistent.

5.2.4 Rebuilding Default Knowledge

In the event of a clash, the reasoner can invoke a contraopenation in order to
restore consistency. Contraction results in removal oflafault statements. The next
step for the reasoner is to re-apply the generation of defaalements. The rebuilding
operation will reevaluate the default rules based on theinewmation, which may add a
new set of default statements. The inference process carrétart from the beginning.
The resulting reasoning process is either consistent smiot. If the resulting knowledge

base is consistent then the reasoner is complete.
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If the resulting knowledge base is not consistent then taerencompatibilities with
the default rules and the stated facts in the knowledge IREsolving these types of errors
requires knowledge that is external to the ontology beindefexd. An intelligent decision
on how to reconcile the rule / knowledge incompatibilityésjuired and likely requires an
external view of the world being modeled. Most importanthe work of the reasoner is
finished. There is no point in attempting to repeat contoactir reasoning.

Suppose the constraint generation algorithm did not chec&dnsistency as it gener-
ates constraints. Figure 5.5 shows a simple ontology thaitially consistent. Using the
vivification procedure on property creates a domain and rangefo&ndB respectively.
Later, the statement thatis — a C is added to the knowledge base. Invoking the reasoner
on the modified ontology results in a conflict. Individdal a type ofC which is disjoint
from classA. The default domain of is A. By default, individuall is a member of both
A andc. This conflict depends on default facts so the knowledge Isasentracted. The
domain and range for propereyare restored t@hing, and the knowledge base is returned
to a consistent state. Because there were no changes to tixeWBich the constraint gen-
eration procedure uses, a reapplication of the domain argkraules restores the original
default domain and range statements. The ontology remaigs inconsistent state.

The inconsistency demonstrated in this example is difficuteconcile. In this case,
there is a type assertion on an individual in the ABox thatfflacis with the default con-
straints generated from the class restrictions in the TBere is insufficient evidence in
the ontology to detect whether the inconsistency is caugedl faulty TBox description,
namely that is disjoint fromcC; or whether there is a fault in the type assertions for ireivi
ual I; or whether there is missing information in the TBox that Vdocause the constraint

generator to build a different set of constraints.
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5.3 Reasoner Correctness

The modifications described in Section 5.2 will preservecthrapleteness and sound-
ness of the reasoner. The modified existential predicateamchtenation operator do not
alter the fundamental operation of the tableau algorithhe modifications do not alter the
generation of the tableau for type assertions over indalglu

The following proof of completion of the unmodified tabledgaithm is shown in
Theorem 5.3.1 and comes from Baader and Nutt (Baader & NQ#&RT he theorem shows
that there is a finite sequence of transformation rules taatbe applied to a knowledge
base. The reasoner can terminate when there are no adtgtat@ments that can be

derived and reasoning is complete.

5.3.1 Completeness

Theorem 5.3.1.Let A be an ABox contained ifi; for somei > 1.

e For every individualr # z, in A, there is a unique sequenc®;, R, ..., R, where
(I > 1) of role names and a unique sequengezrs,, ..., z; — 1 of individual names
such that{ Rz, z1), Ra(z1, x2), ..., R(x_1,2)} C A. In this case, we say that

occurs on level of A.

e If C(X) € A for an individual name: on levell, then the maximal role depth 6f
(i.e., the maximal nesting of constructors involving rpisdounded by the maximal
role depthCy minusi. Consequently, the level of any individualAnis bounded by

the maximal role depth af),.

o If C(z) € A, thenC' is a subdescription af,. Consequently, the number of different

concept assertions onis bounded by the size 6f,.
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e The number of different role successorsaofn A (i.e., individualsy such that
R(z,y) € A for a role nameR) is bounded by the sum of the numbers occurring
in at-least restrictions inCy plus the number of different existential restrictions in

Co.

Theorem 5.3.1 can be extended to the modified reasoner byesaxension. First, if
the knowledge base contains no default statements, thendbddications to the reasoner
are not invoked and the results are unchanged. Since theld@éscriptor only notes the
origin of the statement and carries no other semantic mgattia results of reasoning will

remain the same, which gives the following theorem:

Theorem 5.3.2.Completeness of Default Reasoner. Cétz) € A be a default concept
description. IfC?(x) is not replaced by any non-default reasoning process, tHé&m)
is treated like any other concept description in Lemma 5.3{10¢(z) is replaced by a
stronger, non-default concept,(z), then all occurrences af?(z) are replaced withC' ().
No additional assertions are added as a result of the replea@. Since’?(z) = C(x),

there will be no possible, additional transformation rulesich result from the substitution.

Theorem 5.3.3. Completeness of Default Reasoner With Contraction. A measthat
supports default inference with contraction and knowledgpgeneration will be complete
if the default knowledge generation is a finite process aedifault inference procedure

is complete.

Proof. Theorem 5.3.2 shows that the inference procedure will bepbeten If the inference

procedure terminates in a consistent knowledge base tleea ifhhno contraction and the
completeness results are unchanged. If the knowledge baseansistent then it must
be contracted. There are finite number of default statentlkbatan be removed from the
knowledge base. Lemma 5.3.1 shows that inference to veaifgistency of the non-default

knowledge base is also complete. If the knowledge regdnarptocess is a finite process
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then the knowledge base can be repopulated with defauft fiac finite time. The final
invocation of the default reasoner is complete. Therefinewhole default inference with

contraction and knowledge regeneration is complete. O

5.3.2 Reasoner Soundness

The soundness of these results are derived from the soundhte tableau transfor-
mation rules that are used. Baader and Nutt proved that tirelsess of a tableau reasoner
is derived from soundness of the transformation rules (Ba&d\utt 2003).

Because of the inclusion of disjunction there is an elemémom-determinism in
the reasoner. The result of a transformation of an ABox is itefiset of ABoxes. The
reasoner deals with these sets and non-determinism byhgegithrough the individual
ABoxes. The original ABox is consistent if and only if one bétgenerated ABoxes is also
consistent. LetS = A,,..., A, be such a set. Then the sgis consistent if and only if
there is some, 1 < i < k, such that4; is consistent. The application of a transformation

rule to anA in S generates by one, two, or finitely many ABoxes (Baader & N0O@G3).

Lemma 5.3.4(Baader’'s Soundness Lemma&)ssume thas’ is obtained from the finite set
of ABoxesS by application of a transformation rule. Thehis consistent if and only i§’

is consistent.

The default reasoner described here uses the same transformthat are described
by Baader. To show that the default reasoner is sound regagtblishing whether the

modified contains and union operations alter the soundrfdhe transformation.

Theorem 5.3.5. Assume the transformation rules defined for a non-defausicEygtion
Logic are truth-preserving. Assume the ABXxs obtained from a finite set of ABox8dy
application of a transformation rule including the modifieohtains and union operations.

ThensS is consistent if and only .
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Proof. The modified contains operator does not change the truttemiag property of
the transformation rule. The antecedent of a transformatite depends on the the non-
existence of a particular item. If the item is not in the ABtixen both the original and
modified contains operation will return false. If the iteminsthe ABox and has equal
strength then both the original and modified contains operation seilirn true. The dif-
ference is when the item is present and stronger than theiitéhe ABox. In this case,
the contains operator will return false allowing the tramsfation rule to be applied. The
difference between the two contains operators is corrdmetie modified union operator.
This operator will ensure that the weaker concept is ovétevriwith the stronger concept.
The truth of the transformation is thus unaffected. The ggted ABox,S’ is consistent,

therefore the original ABoxS$ is also consistent. O

The default reasoner is shown to be complete and sound. Témegtt of these re-
sults is that neither do they depend on a particular set ngteamation rules nor do they
depend on the default statements that are available to e¥aged. Thus this method can
be extended to future Description Logics that require suppo default reasoning where
the contraction operation depends only on the presenceinflaration and transformation

rules that propagate the defaultness through reasoning.

5.4 Modifications to OWL

The primary application for this technique is the semantgbwanguage OWL. OWL
does not have a construct to represent the origin of a staterireorder to represent the
default descriptor in OWL, the language must be modified¢aidly the default descriptor.
There are several approaches to this problem that are wqgstbrang, namely: the class in-
heritance mechanism, the annotation property mechanrsirg defined class construction

mechanism.
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Class Inheritance Mechanism One possible way to represent default information
is to create a new clagbiL : Default, and declare each default concept description to be
a sub-classs dfwL : Default. The problem with this approach is that the reasoner will
require modifications to perform the strength-based rewtites described above. When a
non-default assertion is added to the knowledge base teemeawill not replace the ex-
isting default class description. The replacement opamatquires a subsumption check
by the reasoner, which must be carried out while the reasereiilding the taxonomy of
the knowledge base, which will have to be carried out reeahgi This will cause a serious
degradation in the performance of the reasoner becausesittnyuto connect every new
inferred statement to the default class definition. One fi@ason for not using the inher-
itance mechanism is that the default nature of an assediantipart of the world being
described. The defaultness of an assertion is really mistadbeut that assertion. Repre-
senting such metadata as a class description is a funddrakatation to the semantics of

the model being developed.

Annotation Properties Another approach is to rely on the existing class and ob-
ject annotation property mechanism. Either by direct usthefexisting syntax or a new
parallel syntax. This method is very attractive since it Waavoid requiring a change to a
standard language. The problem with using the existingtatioo property is that it would
allow multiple assertions about defaultness to be made $ivere is not a limitation on the
number of content of annotations made about a class in OWereltwould need to be a
well-defined but non-standardized agreement detailing th@aproperty would be used.
The inference rules would need to be modified to look for tHawleannotations in the ter-
minology and to create new default annotations when negedSeally as an annotation
property the reasoner would need to interrogate these gregewvhich are otherwise out

of bounds to the reasoner, to answer questions about defaslt
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5.4.1 Default Constructor

The proposed solution is to create a modification to OWL thatlels the deprecation
flag given to a class, object, or individual property. Prédsean OWL statement can be
marked agleprecatedwhich is a hint to other developers that this description Iheesn
replaced with an updated version. A similar flag can be adddidet OWL language, such
asdefaultto indicate that the description is a default statement.

This has the advantage that the default descriptor can bevexheasily, resulting in
the statement becoming part of the asserted knowledge Aaether advantage is that the
overhead is reduced to a single statement in the knowledge (oa a triple) and readily
available during parsing. Finally the OWL language couidwgate that there will be only
one modifier on any given class which is an improvement oveptitential for multiple
annotations in the previous method.

The main drawback is that this approach would require a neadiéin to the language.
This requires submitting the change for a future revisio®@WL. This would also be an
upward compatible change since old language parsers waodtldate any ontology that
included the constructor. This could be a major problem divaard compatibility is a

concern.

5.5 Reasoner Implementation

A tableau reasoner that implements the Description LogicCAwas created to
demonstrate a reference implementation of the defaulbresiglescribed in in this chap-
ter. This reasoner is meant as a proof of concept to demoasti@abasic functionality that
must be implemented by the reasoner. It is not meant to bedugption-ready reasoner
that works with the suite of OWL languages. This approach sescted as opposed to

modifying an existing reasoner such as Pellet.
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TBox
A C (VR.B)MBM(35.0)
R role
S role
S has-domairD (*)
ABoOX
I1 type-ofA
I1 type-of B (*)

FiG. 5.6. KB Before Reasoning

Reasoners such as Pellet are complex software packagégmgvmany thousands
of lines of code and many compilation units. These tools aeamhto support a variety
of purposes and include support for more than just the basisoning services, such as
SWRL rules. Modifying this reasoner to include support fustresearch would require a
significant amount of effort that is only tangential to thienk.

The reasoner was implemented to take constructs similé&et®WL class construc-
tors, with class definitions, object property definitionsgdanstance assertions. The con-
structs take an optiondefault indicator The default indicator is tracked as meta-data with
each construct. Each of the consistency preserving tranaf@ns is implemented as de-
scribed in Section 5.2. Reasoning preserves and propdbatdsfault indicator throughout

the reasoning process.

5.5.1 Reasoning Results

The example shown in Figure 5.6 shows a simple ontology. &sea single defined
class, A, and two propertiesR and S. A single individual,/1 is asserted to have two
types: A and B. The notation ‘(*)’ shows that a particular statement iseatesd default
or derived from another default statement. Thus, the asedtiat/1 is a type ofB is a

default statement.
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The ontology shown in Figure 5.7 shows the ontology aftessaang. The first action
taken by the reasoner is to apply the unfolding rule, whictisathe definition ofA to
the list of facts known aboutl. Since this is anon-defaultstatement, the result of the
unfolding is alsanon-default Them—rule is applied next, resulting in each of the clauses
of the intersection being added to the list of facts knownualdd. Normally, the reasoner
would not add or replace the assertion thiats a type ofB, because it is already presentin
the knowledge base. The default reasoner will add the néautiéact, /1 type of B, and
replace the existing default fact. This occurs becauseeoirtbdifications to the reasoner’s
rules with respect to theontainspredicate.

The next interesting action taken by the reasoner happeaa abmain operation is
applied to/1. When thed—rule is applied, the reasoner generates an anonymous individ-
ual, genidl to satisfy the rule; and at the same time applies any domainaange assertions
associated with the rule. Here, the propefiyhas a domain ob, which is specified as a

default domain. The reasoner adds four statements for neiswde:

1. genidl is created as an anonymous individual to satisfyZheule.
2. Il is related tagenidl through propertys to satisfy thed—rule,
3. genidl is a type ofC due to thed—rule

4. I1is atype ofD, due to the domain of property.

This last statement is interesting because the domain vwssted to be a default
statement. Because of this, the type assertion tha a type of D becomes a default
statement. This example shows that the reasoner is ableopeily derive facts while
maintaining the default descriptor to the inferred facthisTexample also shows that the
reasoner is able to properly replace any default-fact wimeapgropriate non-default fact

is inferred from the KB.
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TBox
A C (VR.B)M B (35.0)
R role
S role
S has-domainD (*)
ABox
11 type-of A
11 type-of (VR.B) M B11(35.C)
11 type-ofVR.B
11 type-of B
11 type-of3S.C’
genidl type-ol”
11 S genidl
11 type-of D (*)

FiG. 5.7. KB After Reasoning

5.6 Contraction

The semantics of the ontology in the previous example anetichd to one that does
not contain default statements. However, this may not be#ise as future information
is applied to the knowledge base. In the event that someefassertion causes the rea-
soner to detect a clash with a default statement, or oneatefrom a default statement,
the reasoner must take action to restore consistency tothel&dge base. At a minimum,
contraction must remove the statements which cause theed#sr cause information to be
lost). Following the procedure described in Section 5.8 contraction operation imple-
mented here simply removes all default assertions from tlosvledge base, leaving only
those statements that were asserted by the ontology’sradthe result of the contraction
operation is shown in Figure 5.8.

The contraction removed the result of the default domaieréiss but left all other
remaining statements. The contraction does not necestzité the knowledge base back

to a pre-inference state. The example clearly shows theaetaf the previous inference
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TBox
A C (VR.B)M B (35.0)
R role
S role
ABox
11 type-of A
11 type-of (VR.B) M B11(35.C)
11 type-ofVR.B
11 type-of B
11 type-of35.C
genidl type-ol”
11 S genidl

FiG. 5.8. KB After Contraction

in the knowledge base. The contraction only removes thauttesfeatements.
Without the default statements, the knowledge base should again be consistent.
The processes which were used to build the default factsgain be applied. For example,

the domain and range constraint generation process coagged to the ontology again.

5.7 Conclusion

The use of default rules to create new statements can leacktigacted clashes in the
knowledge base. These clashes may not be evident until aneais invoked on such a
knowledge base. A clash in default statements should bedduddferently than a clash
based on asserted statements. In the latter, this is coedidérue clash, and the knowledge
base is described as inconsistent. Conversely, if the deslirs as a consequence of the
default statements then this indicates that the problesesmvith the default statements.
In order to restore the knowledge base to a consistent stetdnowledge base must be
rolled-back or contracted to a valid, consistent state.

As implemented here, contraction describes the processrove default statements

from the knowledge base. The contraction operation musbmnigtremove the statements
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added directly by the default rules, but also any statenthatswere inferred by the rea-
soner. In order to support this process, the defaultnedseo$tatement must be tracked
with the statement. The default descriptor was introduoegthow the origin of a statement
as being the result of a default statement or the result efémice using a default statement.
Contraction can remove any statement tainted by this psoces

The inference procedures of the reasoner must be modifiecbfragate the default
descriptor when a default statement is used to produce atagswgent. The reasoner must
also replace a weaker, default statement with a strongerdetault statement. A set of
minor alterations to the traditional tableau reasonercifipally the contains and union
operations, implement the necessary changes to the redas@wpport propagation of the
default descriptor. Further, it was shown that this modiiicacan be implemented without
changing the soundness or completeness of the tableamezaso

A reasoner was implemented to support a very limited set faiultereasoning. A fact
derived from another default statement will, itself be détfaAt the same time, any fact that
is non-default will replace an equivalent default fact ie #tmowledge base. This reasoner
also supports a minimal version of contraction which rensaledefault facts (asserted or
inferred) to restore the knowledge base to a consistemt. stat

This reasoner was not developed as a full default logic réagoengine. Instead,
the intent was to provide the minimal set of features necggsedrack default descriptors
through the reasoning process. This is more of an enginappsoach than a logicians.
The result is a simple reasoning model that maintains theachkexistics of the description
logic it is built upon, such as completeness, decidabdity] efficiency.

The OWL specification does not currently allow a default desor to be stored with
the concept hierarchy. A simple and efficient modificatiothi® OWL specification to tag
each concept with a default descriptor is proposed. If thietegy were accepted to the

OWL standard, the OWL language would have a standard nataditrack the origin of a
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statement and to allow the reasoner to support the cordregperation.
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Chapter 6

CONSTRAINT GENERATION ON REAL
ONTOLOGIES

This chapter explores the application of the different gatien algorithms on a col-
lection of real-world ontologies. In Chapter 4 the algamnthwere applied to a few synthetic
examples. This chapter will apply the algorithms to a lamgiéection of real world results.

It is easy to construct synthetic examples that demonss@atee desired property. This
experiment will demonstrate that the generation techrsglgscribed here can be applied
on real-world ontologies to generate domain constraints.

Section 6.1 presents an overview of the collection of doaimand testing envi-
ronment used for this experiment. Details about how comtsravere generated for this
experiment are described in Section 6.2. A comparison oalperithms is presented in
Section 6.3. Real world examples are explored in Sectionfutime performance statis-

tics are discussed in Section 6.5.

6.1 Swoogle

The Swoogle project, created by the eBiquity group at thevéisity of Maryland-
Baltimore County, results in a collection of semantic webwtoents (Dinget al. 2004). A

snapshot of the Swoogle documents was used for this resédretSwoogle snapshot con-
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Table 6.1. Swoogle Statistics
Count Description
2,236,147 Total Number of Semantic Web Documents
395,584,533 Total Number of Triples

Table 6.2. Swoolge OWL Counts
Count Document Type
2,236,147 Total SWD’s including RDF, FOAF, and OWL
133,920 OWL Documents
11,662 OWL SWD's with properties
7,080 Valid OWL Ontologies

sists of 2,236,147 semantic web documents harvested betleeriary 17, 2005 through
April 28, 2007. A summary of these statistics appears indélil.

OWL documents make up a relatively small subset of the tatallver of documents
in the Swoogle repository. A document was determined to b©WA. document if it
imported a namespace abbreviated ‘owl.” The set of docuseas further reduced to
only those documents that contain properties, since theydime of little use to this study
otherwise. A summary appears in Table 6.2.

Only 7,080 of the 11,662 OWL ontologies were found to be vaBdme documents
could not be loaded by the ontology tools, and can becomdidngae to version drift,
communications error, or structural errors in the ontolitgglf. Other documents became

invalid as a result of invoking the reasoner because theg imeonsistent.

6.2 Building Constraints

Three different algorithms to constraint generation wegscdbed in Chapter 4: dis-
junction, least-common named subsumer (LCNS), and vitifina A program,JPDo-
mainGeneratomas created to apply each of the three algorithms to a givesiagy and

to compare the results. In order to assess the performanttee dhree algorithms, the
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process was applied to each of the valid ontologies in theogleadatabase.

The generator was implemented in Java using the ProtegeraRha Pellet reasoner.
The latest ‘beta’ release of Protege 3.4 was used for theriexget. This version was
selected due to its improved support to invoke the reas@&min to this version, the Pellet
reasoner was available only through the DIG interface. is theta’ release, the Pellet
reasoner is available directly through the Protege and OWSA This results in more
efficient reasoning and a single process to manage.

The generator operates by loading the ontology into a Peotegdel, invoking the
reasoner to classify the taxonomy and infer new instancestypor each property in the
ontology and for each generation type, the domain and rangeristructed. The reasoner
is used to compute the subsumption relationship betweeartgmal property’s asserted
domain and range, and each of the constraints created bdyr#eegeneration methods. The
detailed results are stored in an XML database for lateryaisal

Running JPDomainGeneratocould take as little as a few seconds to retrieve the
ontology from theSwoogleCacheanvoke the reasoner, and generate and compare the con-
straints. In some cases, the reasoner would demand angiiagdé amount of memory or
CPU time. A total of 2GB of heap space and 30 minutes of time allasated taJPDo-
mainGeneratoito process each document. If either of these were exceedadtik task

would be killed and an error reported in the database.

6.2.1 Test Environment

Initially, the tests were conducted on a pair of computens, aserver for the Swoogle
meta-data and cache files; and another to run the JPDoman&@en Even though the ex-
periment ran on only 7,000 ontologies, it required multipieeks to complete. The test
environment was shifted to a loosely coupled cluster ctingiof 26 8-core PowerMac

workstations, with a total of 208 processors and 104GB of RAJsich ontology was se-
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guentially evaluated on one core, with the cluster exeguimto 208 evaluations simulta-
neously.

Using this test environment, all 7,080 OWL ontologies werecpssed in approxi-
mately seven hours. The speed-up is due to the independetieeanstraint generation,
and the ability of the central server to serve the cached SW@over 200 concurrent

processors.

6.3 Results

This section describes the results of generating domaimaarge constraints over the
properties in the Swoogle database. For each of the thres typpontology generation
algorithms a domain and range was computed. The subsumiatmonship between
the original and generated constraints was computed amddet. The results for the
generation of domains is shown in Table 6.3, and for rang@&alite 6.4.

In each of the tables, when a constraint is not specified itielogy it is treated as
a special case, that of being unspecified, even though itiva&gnt toowl : Thing. This
makes it possible for an ontology designer to explicitlyessthat the domain and range is

owl : Thing.

6.3.1 Domains

The first row of Table 6.3 on page 10@yiginal Equals Generatéghows the number
of properties in all of the ontologies where the original@fied domain constraint is equal,
with respect to subsumption checking, to the generatedticonts Only those properties
whose constraints are explicitly stated to be somethingrdtianowl : Thing are included
in this category.

In all cases, the finding that the generated constraint reatttie original specified



Table 6.3. Domain Comparison: Original to Generated Types

Relationship Disjunction LCNS Vivified
# props %| # props %| # props %
1 | Original Equals Generated 801 2.8 833 29 808 2.8
2 | Original More Specific Than Generated 7 0.0 7 0.0 63 0.2
3 | Original More General Than Generated 141 0.5 103 04 74 0.3
4 | Original T, Generated™ 800 2.8/ 1111 3.8 807 2.8
5 | Original T, Generated More Specific 2427 8.4 2112 7.3] 2412 8.4
6 | Generated’, Original More Specific 27 0.1 71 0.2 25 0.1
7 | Property Unused, Original Specified 3201 11.1} 3204 11.1f 3190 11.0
8 | Property Unused, Domain Unspecified 21385 74.00 21406 74.1] 21267 73.6
9 | Processor Failed 64 0.2 46 0.2 201 0.7
10 | Reasoner Failed 49 0.2 9 0.0 53 0.2

Total 28902 28902 28902

L0T
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constraint reflects that this algorithm correctly infertbée constraints for the property.
The fact that both LCNS and Vivification were able to generatge equal constraints
than disjunction is a novel outcome. For example, in onewerld ontology, the specified
domain for a propertitas_pathological_type is defined by the author @3seases (Ad-
vanced Computation Laboratory - Cancer Research UK ). T$jardition generator found
the set of diseases which are defined in terms of a restriotiotinis property, namely(
Breast_Cancer Ll Cancers Ll Adenocarcinoma of the Breast ... ). Both the LCNS
and Vivification algorithms summarized this disjunctiomt&eases, the same as the orig-
inal specified domain.

The second row of Table 6.3)riginal More Specific Than Generatezhows a small
number of properties where the original was more specifino tha generated one. This
result was another novel outcome of this approach. In thse,ciéd shows that the author
specified a domain or range that was more specific than theaeris constraint which
was inferred from its usage. Stated another way, the auttoarrectly constricted the
constraint beyond those classes which use it. For examplenather real-world ontol-
ogy, the author specified the domain for a properiyute — of to be the intersection of
time — point andcalendar — date (Knowledge Media Institute, The Open University
). All three generation algorithms constructed a domairtiofe — point . The class
time — point includes a restriction(< 1 Thing ). The classcalendar — date is a
subclass oftime — point, and includes its own restriction’< 1 Thing ), it is not in-
herited. In this case, the intersectiontdfne — point andcalendar — date is the the
classcalendar — date. Any instance of classime — point would become an instance
of type calendar — date. This result indicates that the disjunction method of cast
generation may be used to detect inconsistent ontologgedihe same cannot be said
for the other two methods because they may each over-gegetiad constraints.

There is a significant difference between the disjunctiah [@@NS algorithms, each
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reporting seven properties in this category; and the Vaifan algorithm which reports
sixty-three. This is a by-product of the summarization perfed by the vivification ap-
proach. Where the disjunction of concepts can easily criflgseht branches in the inher-
itance tree, the vivification algorithm will summarize tees a set of common top level
concepts and any more specific concepts that could not betaasol he result is that the
Vivification approach will tend to generalize in more cademtthe other two methods.

The next row, Original More General Than Generateid a positive to neutral out-
come. The present usage of the ontology contains a propéyenthe original, asserted
constraint is more general than its present usage suggdésie are many reasons for this.
This may be intentional: the author elected to leave opaendytossibilities; or this may be
unintentional: the author incorrectly specified the caistrto be overly general. There is
insufficient evidence to reliably identify which is the cafiéhe property were specifically
left general to support future work, then the combinatiothef constraint generation pro-
cess and default reasoning proposed here may help closerttamsc gap for the reasoner
while leaving open future modifications.

The fourth row, Original T, GeneratedT’ is another form of the case that both the
generated and specified constraints are equal. In thicpkaticase, they are both equal to
Thing, which is a group that was excluded in the first row of thisealdlhis is a neutral
result and reflects the incomplete or under-specified natuseme real-world ontologies.
One interesting outcome of this case is the demonstratitimeofendency of the LCNS to
summarize tol. Here, about three hundred more properties were summanozibe top
concept. This will happen when the constraint must includdigns of the inheritance
tree which cross branches at the first level. The least-cammamed subsumer is the top
concept. For these approximately three hundred propértidd — 800 = 311), this is a
negative result for LCNS.

The fifth row, ‘Original T, Generated More Specifishows strong results for the
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generation algorithm. These are properties which the ogychuthor used in a restriction,
but did not specify a domain constraint. Because the origioastraint was unspecified
there is little to compare between it and the generated @nst It is interesting that the
numerical difference between the LCNS and disjunction weths(2427 — 2112 = 315),
which is almost identical to the 311 difference on the prasicow. This illustrates how
the LCNS tends to over-generalize to the top concept. Tha wifference between the
disjunction and LCNS is that the LCNS tends to summariz@iting. The vivification
approach is almost identical to the disjunction approacthéquality of generalization.
This is strong empirical evidence of the strength of thefigation algorithm over the other
two approaches.

The sixth row, GeneratedT, Original More Specificcan be a neutral or negative
result for all three algorithms. For a given property, théotogy’s author described con-
straints on a property, but the constraint generation dlguorcreated a constraint of.
This is another case of that described in the third row of thide. The same pattern
emerges, with the LCNS tending to generate concepraiatg where the other two tend
to be more specific; but all three generate results in thismool

In some cases, the generator creates a constraint thativaleema the original, non-
top concept. After invoking the reasoner, the reasoner timaisthe generated constraint is
equivalent to the top concept. This peculiar situation nmalydate an inconsistency in the
ontology, namely that a defined concept is found to encomibeswhole universe. This
is typically not an intended outcome when designing an ogtpl In one real example,
an ontology’s author described a universe consistinge@ton and its various subclasses
(Stanford Medical Informatics ). The property in questiaagsAunt is defined by two
classesNiece andNephew. These two classes are defined to be equivalewstan and
Man, respectively, andPerson transitively. The domain was specified by the author as

Person and based on the defined class restrictions the domain wasaged to b@erson.
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The reasoner concluded that the property was equivalefitiag, even though it was
specified as noMhing. The problem in this case was that there was a logical errtirein
definition of thePerson class such that it included the disjunction of a concept &d i
negation.

The next two cases, appearing on lines seven and eight, air@iresults for property
generation. These two lines count properties that are definan ontology but are not
used in any class definitions. In the present state of defindf the Semantic Web, it is
clear that the majority of property assertions are madeowitdomain constraints and are
not tied to any particular class definitions. This illustésat clear problem in ascribing any
semantic meaning to the property or the individuals coreteby it. In a graph-theoretic
interpretation of these properties, they represent anetmeden a pair of individuals with a
label that represents some concept that connects thenlikiéligthat the ontology author
fell to the GENSYM fallacy and assumes that the semantic mgaof the property is
derived from the name of the property - it is not.

The final two lines of Table 6.3 represent processing eridns.first represents errors
of the generator itself. For example, the generator triegktoerate a concept that clashed
with the ontology, or there was an unspecified programmingreor in some rare cases,
ontologies that used data type properties as if they werecblproperties. The second
category of errors is generated by the reasoner itself. Winaking the reasoner, the
reasoner is allocated a fixed amount of time and memory toperfone half-hour of time
and 1.5 GB of memory). If the reasoner fails to complete withiese resources then it is

terminated and counted as an error.

6.3.2 Ranges

Table 6.4 on page 112 shows the same type of results as Tableuéfor range con-

straints on properties. Based on these two tables, theésdésutange constraints are similar



Table 6.4. Range Comparison: Original to Generated Types

Relationship Disjunction LCNS Vivified
# props %| # props %| # props %
1 | Original Equals Generated 231 0.8 248 0.9 255 0.9
2 | Original More Specific Than Generated 6 0.0 6 0.0 17 0.1
3 | Original More General Than Generated 172 0.6 147 05 138 0.5
4 | Original T, Generated™ 647 2.2 930 3.2 657 2.3
5 | Original T, Generated More Specific 2113 7.3] 1839 6.4 2097 7.3
6 | Generated’, Original More Specific 361 1.2 392 14 365 1.3
7 | Property Unused, Original Specified 3403 11.8] 3428 11.9) 3416 11.8
8 | Property Unused, Domain Unspecified 21824 75.5 21834 75.5 20959 72.5
9 | Processor Failed 102 102 63 0.2 955 3.3
10 | Reasoner Failed 43 43 15 0.1 43 0.1

Total 28902 28902 28902

AN
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to those for domain constraints. This stems largely fronfdloethat the set of subjects for
a property generalize differently than the set of objectsafproperty. For example, con-
sider a fictitious assertiokpowsStuff, which may have a domain @krson but a range
of Thing. Unsurprisingly, the generation of a domain will not be a ¢topcept, while the
range will be. In spite of the numerical differences, the saualitative relationships hold

between the different categories of generation results.

6.3.3 Results Summary

Several of the rows in Tables 6.3 and 6.4 are irrelevant topdréormance of the
generation method. They are either errors or include ptigsewhich are not used. One
additional view of the data is shown in Table 6.5. This tableveés the same statistics as in
the previous two tables; but with the irrelevant data rerdove

This table shows that any of the three generation methodsegdace non-existent
constraints. Each of the three algorithms demonstratéerift capability to generalize a
constraint at an appropriate level. The conclusion thattbNS tends to over-generalize
those constraints is made even more clear on this table wdmparing rows three and four
for the three generation methods. Of the three generatidhauds, this data shows that for
both domain and range generation, the disjunction and eatibn approaches perform

similarly.

6.4 Results of Application in Different Domains

6.4.1 Plant Anatomy

One example that highlights the difference in generalirelietween the different al-
gorithms can be seen in Figure 6.1. This example comes frenSttoogle repository

(Mungall ) and is part of an ontology that describes the péanattomy domain. The ontol-



Table 6.5. Domain and Range Comparison: Original to Geedragpes

Domain
Relationship Disjunction LCNS Vivified
# props %| # props %| # props %
Original Equals Generated 801 19.1 833 19.7 808 19.6
Original More General Than Generated 141 3.4 103 24 74 1.8
Original T, Generated™ 800 19.1] 1111 26.3 807 19.5
Original T, Generated More Specific 2427 57.8 2112 49.9] 2414 58.5
Generated’, Original More Specific 27 0.6 71 1.7 25 0.6
Total 4,196 4,230 4,128
Range
Relationship Disjunction LCNS Vivified
# props %| # props %| # props %
Original Equals Generated 231 6.6 248 7.0 255 7.3
Original More General Than Generated 172 4.9 147 41 138 3.9
Original T, Generated™ 647 18.4 930 26.2 657 18.7
Original T, Generated More Specific 2113 60.0f 1839 51.7] 2097 59.7
Generated’, Original More Specific 361 10.2 392 11.0 365 104
Total 3,524 3,556 3,512

V11



© 0 N O s WN P

NNNRNNERRRRRRR P B B
2 WNBRPO®©®NO®O ™ WN R O

115

Property: sensu

Origi nal Donmi n:
Thi ng

Di sj oi nt Donmi n:

PO_0006456, PO_0006482, PO_0006460, PO_0006384, PO _0006478, PO_0006318, PO_0006468,
PO_0006450, PO 0006357, PO_0006447, PO 0006383, PO 0006461, PO 0006494, PO_0000041,
PO_0006444, PO_0006451, PO_0006476, PO_0006495, PO 0006462, PO_0006481, PO 0006485,
PO_0006474, PO_0006471, PO_0006499, PO 0006441, PO 0006448, PO_0006477, PO_0006487,
PO_0006455, PO 0006465, PO_0006508, PO 0006443, PO 0006489, PO 0006446, PO_0006507,
PO_0006457, PO_0006470, PO_0006445, PO 0006459, PO 0006467, PO_0006329, PO 0006469,
PO_0006466, PO 0006483, PO_0006458, PO 0006472, PO 0006449, PO 0006473, PO_0006484,
PO_0006454, PO_0006486, PO_0006475, PO_0006464, PO_0006497, PO_0006442, PO_0006453,
PO_0006496, PO 0006463, PO_0006506, PO 0006452, PO 0006493, PO_0006490, PO_0006498,
PO_0006491, PO_0006480, PO_0006500, PO_0006492, PO _0006479

LCNS Donmi n:
Thi ng

Vivified Domain:

PO 0009074, PO_0020006, PO_0020101, PO 0009067, PO 0020019, PO 0009066, PO_0020048,
PO 0009073, PO_0009046, PO 0009062, PO 0006204, PO 0009070, PO_0009027, PO 0020026,
PO _0020003, PO 0009014, PO_0009013

FIG. 6.1. Constraint Generalization. Example where condtggneration can improve
reasoning performance

Table 6.6. Performance Time for Plant Anatomy Processing
Generator Time (S)
Disjunction 59.8
LCNS 90.0
Vivification 50.3

ogy contains 734 classes, 8 object properties, and 1,068laab axioms.

Table 6.6 timing statistics for each of the three methode firhe reported here is the
total time, in seconds, required to load, build constran#ll properties, assign constraints
to properties, re-classify the terminology and computeriefd types for all individuals.
This follows the same approach described in Section 6.3.

The disjunction method created the most specific and alsdotigest descriptions

compared to the other methods. For example, for the propsstya, which is jargon
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from the plant anatomy domain, it created a property dontsan was the disjunction of
68 different classes. Despite the fact that this method @ésntiost efficient to compute
constraints, its overall performance was 19% slower tharnvifification method. This is
mainly due to the classification costs associated with tlyeldisjunctive sentences present
after constraint generation.

The vivification method demonstrated remarkable perfogaan this example. Its
ability to summarize disjunctive sentences enabled it tarearize the long disjunctions
into shorter, more concise descriptions which helped imptbe performance of the rea-
soner. For example, for theensu property described above, the vivification approach
created a more general concept description consisting @laksées in disjunction. This
was a 74% reduction in the length of the domain descriptiohaAesult of efficient gen-
eration and more concise concept descriptions, vivificatvas the fastest method of the
three compared here.

The LCNS algorithm performed quite poorly in this case. THeNS performed
poorly due to the very large number of subsumption querias\iere required to sum-
marize the large and complex classes in this particular pl@nThis is largely due to the
large number of the concepts and the deepness of the infaiteee which required more
subsumption checks to compute the LCNS. The LCNS consti@irihe sensu property
was over-generalized Thing.

This result clearly shows the vivification method can effitigcreate concise concept
descriptions, even with a reasonably complex ontologys Tésult also demonstrates that
there is a significant performance benefit to breaking dowg ftisjunctions in real-world
ontologies. Finally, it shows that the vivification algbit out performed the other two

methods.
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6.4.2 Machine Translated Data

The next example shows some of the challenges working witthina generated
ontologies. This example appears to be a machine genenati@ldgy, based on the chosen
class names and the poor structure of terminological celati This ontology is nearly
completely flat - there are two subclasseswf : Thing: Person and Thing. There are no
class restrictions in this ontology. There are 22 objecpprties and 44 individuals. While
there is a significant amount of data in this ontology, theneery little knowledge encoded
init.

For each of the 22 object properties, the domain and rangsreamts of this ontology
areowl : Thing. There is simply not enough information to support the gatien pro-
cess within the taxonomy. This degenerate case is illistraf the case where a semantic
web document is simply a collection of data encoded in OWheathan a rich taxonomy
describing knowledge. In this case, it is unlikely that watifditional external information
(e.g. a mapping to another ontology) that any generatiomaoadetvill be able to do much
better. Because of the lack of any evidence about the use @rtiperties in the terminol-
ogy, the algorithms used here were unable to generate aramisor any of the classes in

this ontology.

6.5 Performance Comparison

This section compares the run-time performance of the thlgarithms. Run-time
performance is important for a number of applications, sagfuture search engines. Ta-
bles 6.7 and 6.8 show a comparison of the run-time for eacheoféneration algorithms.

Table 6.7 shows run-time performance statistics of eacheofjeneration algorithms.
A random sample of 100 ontologies was selected for this amalyThe same ontologies

were used for each sample. For each group, the time, in sectmbbad and classify the



Table 6.7. Performance of Generation Algorithms

Algorithm | Statistic| Seconds
min 3.80

None max 14.62
average 5.29

std. dev 1.71

min 3.85

Disjunction max 23.37
average 5.43

std. dev 2.29

min 3.79

max 23.92

LCNS average 5.34
std. dev 2.20

min 3.79

e max 22.56
Vivification average E59
std. dev 2.08

Table 6.8. Normalized Performance of Generation Algorghm

Method Average| Std. Dev
Disjunction 0.22 1.16
LCNS 0.14 0.14
Vivification 0.08 .82
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ontology, then generate the constraints, and then clagsfgnodified ontology is reported

as a minimum, maximum, average, and standard deviationfifBhgroup, labeled ‘None,

reports base-line performance statistics, and omits thetaint generation step; but still

uses the reasoner.

This table suggests that the performance of the vivificatigorithm is better (lower

is better) than the other two. In fact, based on these statighe performance of the

vivification algorithm is nearest the performance withoehgration. Standard hypothesis

testing shows that due to the high standard deviation, thierfsults are not significantly

different.
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The cost to load an ontology and invoke the reasoner on itpsoxgmately constant,
and acts as a linear scaling of the data values. Subtratiimj}ed cost leads to the results
shown in Table 6.8. This table shows the costs, in secondgerdrating the constraints
and invoking the reasoner on the result. In this case, therdifice between the algorithms
is statistically significant. The vivification approach &sfer than the disjunction at the

92.6% confidence interval, and is faster than the LC’NSL% confidence interval.

6.6 Conclusion

A significant collection of real-world ontologies colledt&rom Swoogle were used
as the basis for this work. The normal mechanism for retmiggemantic web documents
proved unsatisfactory for this work due to a number of défertypes of errors, especially
due to communications and revisions. A ‘Semantic Web in a Best environment was
created to improve the speed of data collection over thielaollection of documents. One
outcome of this research is that this testing environmembeaused for future studies and
may serve as a model for future semantic web agents whichtoepdckly perform tasks
for their masters.

Comparing the domain and range constraints generated biyitbe different algo-
rithms shows significant differences between them. Theidddjon algorithm is the sim-
plest of the three in that it does not perform any generatimadf the constraint. These
results show that while disjunctive constraints provide itost specificity, they also tend
to reduce the performance of the reasoner. These resuitslatsv that the LCNS ap-
proach was relatively poor at creating useful constraiatd tends to over-generalize, in
most cases to the top concept. The vivification algorithmalestrated generalization per-
formance that was nearly identical to the disjunction athar. Because concepts were

summarized, the long chains of disjunction were broken dbwthis algorithm reducing
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the time and memory required by the reasoner.

Not every ontology lends itself to this technique. Each @sthalgorithms depends
on the availability of a taxonomy which is built with classtections over the set of prop-
erties. In the extreme case where there is simply a set ddedasithout any restrictions
then these algorithms are unable to generate any constediadl. As the complexity of
the taxonomy and availability of restrictions increases ¢lidence for constraint gener-
ation increases as well. For small ontologies with shorirghaf disjunctions, both the
disjunction and vivification algorithms are appropriateickes. As the size of the disjunc-
tive chains increase, the vivification algorithm is the bedstaround choice. The LCNS
algorithm demonstrated such poor performance its usedealiaged in favor of the other

two algorithms.



Chapter 7

CONCLUSION

The research set out to provide a solution to the problem s$imj domain and range
constraints in OWL ontologies. It was shown that this prable pervasive: the vast ma-
jority of properties of real-world ontologies in presenew®o not include any domain and
range constraints. Several reasons why these constragnt®aspecified were presented.
In many cases, the information is available but not direetlgoded in the ontology.

This chapter provides a summary of the major results of taigeegation process. A
summary of the major results appears in Section 7.1 and agnview of possible future

work appears in Section 7.2.

7.1 Major Results

Given an ontology, an approach to create constraints wagided. This approach
is based on inferring the usage of a property from classesatefn terms of restrictions
based on the properties. This approach quickly turned tboastof generating constraints.
The most direct way to generate a domain constraint front afli@strictions on a property
is to construct a disjunction of the concepts. This resefanther investigated the tendency
of disjunctive constraints to be overly specific and tendai@is long chains of disjunctions.

This research also demonstrated how these long disjusctvonld negatively impact the

121
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performance of the reasoner.

Two methods of summarizing the properties were descritbedetist-common named
subsumer and vivification methods. The least-common namiesusner builds a concept
description of the least-common (or least general) namasksdh the ontology that sub-
sumes every member of the domain or range. The vivificatiocept creates summaries
by allowing partial subsumption checking while constrgtthe list.

A comparison of the constraints generated by the three ittigos showed that the
LCNS algorithm tended to over-generalize and create cainssrthat were equivalent to
the top-concept or else were more general than the other ®tbhads. The same results
showed that the vivification algorithm produces constsaihat are closer to the specificity
of the disjunction algorithm while still creating usefulsmaries of common super-classes
in the constraint. This is beneficial to preserve as mucheétiailable information as pos-
sible while breaking the long disjunctive chains that impddhe reasoner’s performance.

A time-based comparison showed that the vivification atbari was statistically
faster than the other approaches. This is due to the amtiohizef the generation costs
over the improved reasoner cost of the final model. Thus,daam ontologies, the vivifi-
cation algorithm is superior in generalization and in pearfance.

The problem with applying any of the three algorithms is th&t equivalent to mak-
ing default assertions and introduces non-monotonicity potential undecidability into
the ontology. A method to address a very limited form of diéfiemasoning was introduced
which tracked the origin of a particular statement to beegittefault or non-default. A
set of modifications to the reasoner were described whichgyated the defaultness of a
statement through any statements which were derived inerdrgdart from another default
statement; and which allowed a non-default statement facem default statement. In the
event of a clash in the knowledge base or to handle retractiare to non-monotonicity, a

retraction operation was built into the reasoner whichvedid the default facts (and those
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facts derived from them) to be removed from the knowledge b&ecause of the lim-
ited scope of this modification, the resulting reasoner warsahstrated to be complete,

decidable, and efficient.

7.2 Future Work

This research raises some additional questions that carpbered in future work:
such as role of instance data, domain and range pairingsf akess names for constructing
constraints, comparing ontologies, and improving seagshlts.

One of the primary questions is whether individual instatiat can be used to im-
prove the results of the constraint generation processhé\ptesent, there appears to be
a significant amount of variability in the amount of type atieas that can be extracted
from the instance data. As such, it is not clear that thereffecgent information to support
generation of additional constraints (or even to verify tberectness of constraints) from
the instantiation data. Assertional evidence may also b&iliduring contraction, such as
in the situation discussed in Section 5.2.4, when theresisfiicient evidence in the TBox
to properly infer default constructs.

Another open question is how the new OWL 1.1 constraint pattehere domain and
range statements are paired can be combined with this gemeraethod. Specifically,
will vivification yield satisfactory results when the larege allows multiple domain and
range pairings. Even if it does, the method in which the \@dfconcept is created would
need to be modified to take advantage of the new linguistip@tip

One other area that warrants some exploration is the useeafitiss names and ex-
ternal meta-ontologies in constructing the domain andeampstraints. The current work
ignores the name of the symbols used. However, there are sgsteams that make use of

the symbol names to extend additional meaning into the ogyol This approach, often
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used by ontology mapping tools, may allow additional caists to be generated even
when not supported by the usage within the ontology.

One final future application of this research is in the dontdisemantic search en-
gines. Presently, search engines such as Google try tossigly magnify the amount of
information from the given documents in the search basey Tieed to do this to over-
come differences in information representation in theowsiweb documents. It is clear
from this research that different ontologies have differ@egrees of completeness and
specificity. Further, accurately mapping and linking doeuis will require a rich ontology
with clear semantics. Using this approach, property caitds can be generated during
the mapping or linking phases and improve the performandcheomapper and resulting
reasoner. Further, this approach can be used by the seanhtagimplify and general-
ize long disjunction chains to gain additional reasoninggyenance and reduce memory

costs.

7.3 Conclusion

The research results presented here strongly supportitiiralresearch thesis. It is
possible to generate domain and range constraints for gregel hese constraints may be
used to find new information in existing ontologies, and i t& done efficiently. With
a few modifications to the reasoner the issues of defaulbréag and non-monotonicity
can be addressed as well. This research is an exciting begifor a number of different
application areas and future research areas. These metlagdse extended into additional

areas and future Semantic Web languages.
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