

Approval Sheet

Title of Dissertation: Semantically-Linked Bayesian Networks: A

Framework for Probabilistic Inference Over Multiple
Bayesian Networks

Name of Candidate: Rong Pan
 Doctor of Philosophy, 2006

Dissertation and Abstract Approved: ______________________________
 Doctor Yun Peng
 Professor (Chair)
 Department of Computer Science
 and Electrical Engineering

Date Approved: __________________

Curriculum Vitae

Name: Rong Pan

Permanent address: 20 Casey Ct, Catonsville, Maryland, 21228.

Degree and date to be conferred: Ph.D., 2006.

Date of Birth: June 13, 1979.

Place of Birth: Beijing, People’s Republic of China.

Secondary education:

 The Fifth High School of Beijing,
 Beijing, People’s Republic of China, June 1997

Collegiate institutions attended:

Peking University, Beijing, People’s Republic of China
September 1997 – June 2001, B.S., June 2001

Major: Computer Science

University of Maryland, Baltimore County, Baltimore, Maryland
September 2001 – August 2006, Ph.D., December 2005

Major: Computer Science

Professional Publications:

Rong Pan, Yun Peng, and Zhongli Ding, Belief Update in Bayesian Networks Using
Uncertain Evidence. Submitted to the 18th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI06).

Rong Pan, Zhongli Ding, Yang Yu, and Yun Peng, A Bayesian Network Approach to
Ontology Mapping. In Proceedings of the Fourth International Semantic Web Conference
(ISWC2005), Galway, Ireland, November 2005.

Zhongli Ding, Yun Peng, and Rong Pan, BayesOWL: Uncertainty Modeling in Semantic
Web Ontologies. In Soft Computing in Ontologies and Semantic Web, Springer-Verlag,
December 2005.

Li Ding, Rong Pan, Tim Finin, Anupam Joshi, Yun Peng and Pranam Kolari, Finding
and Ranking Knowledge on the Semantic Web. In Proceedings of the Fourth International
Semantic Web Conference (ISWC2005), Galway, Ireland, November 2005.

Li Ding, Rong Pan, Tim Finin, Anupam Joshi, Yun Peng and Pranam Kolari, Search on
the Semantic Web. IEEE Computer, October 2005, 62-69.

Rong Pan and Yun Peng, A Framework for Bayesian Network Mapping. The Twentieth
National Conference on Artificial Intelligence (AAAI-05), student abstract, Pittsburgh,
PA, July 2005.

Zhongli Ding, Yun Peng, Rong Pan, and Yang Yu, A Bayesian Methodology Towards
Automatic Ontology Mapping. AAAI-05 Workshop on Contexts and Ontologies: Theory,
Practice and Applications, Pittsburgh, PA, July 2005.

Tim Finin, Li Ding, Rong Pan, Anupam Joshi, Pranam Kolari, Akshay Java and Yun
Peng, Swoogle: Searching for knowledge on the Semantic Web. In proceedings of AAAI
05 (intelligent systems demo) , July, 2005.

Zhongli Ding, Yun Peng, and Rong Pan, A Bayesian Approach to Uncertainty Modeling
in OWL Ontology. In Proceedings of 2004 International Conference on Advances in
Intelligent Systems - Theory and Applications (AISTA2004). November 15-18, 2004,
Luxembourg-Kirchberg, Luxembourg.

Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Joel Sachs, Vishal Doshi,
Pavan Reddivari, and Yun Peng, Swoogle: A Search and Metadata Engine for the
Semantic Web, Thirteenth ACM Conference on Information and Knowledge
Management (CIKM'04), Washington DC, November 2004.

Youyong Zou, Tim Finin, Li Ding, Harry Chen, and Rong Pan, Using Semantic Web
technology in Multi-Agent Systems: a case study, in the TAGA trading agent environment
5th International Conference On Electronic Commerce: Technologies, Pittsburg, 1-3
October 2003.

Youyong Zou, Tim Finin, Li Ding, Harry Chen, and Rong Pan, TAGA: Trading Agent
Competition in Agentcities, Workshop on Trading Agent Design and Analysis, held in
conjunction with the Eighteenth International Joint Conference on Artificial Intelligence,
11 August, 2003, Acuulco MX.

Professional Positions Held

2003 – 2006:

Research Assistant

Ebiquity Lab, UMBC

2005 (summer)

Summer Intern

Stottler Henke Associates Inc.

2002 (spring):

Intern

Silicon Graphic, Inc., China

Abstract

Title of Dissertation: Semantically-Linked Bayesian Networks: A Framework for
Probabilistic Inference Over Multiple Bayesian Networks

Rong Pan, Doctor of Philosophy, 2006

Dissertation Directed by:

 Yun Peng
 Professor
 Department of Computer Science and Electrical Engineering
 University of Maryland Baltimore County

At the present time, Bayesian networks (BNs), presumably the most popular uncertainty

inference framework, are still widely used as standalone systems. When the problem

itself is distributed, domain knowledge has to be centralized and unified before a single

BN can be created. Alternatively, separate BNs describing related sub-domains or

different aspects of the same domain may be created, but it is difficult to combine them

for problem solving even if the interdependent relations between variables across these

BNs are available. Existing approaches have greatly restricted expressiveness and

applicability as they either impose very strong constraints on the distributed domain

knowledge or only focus on a specific application. What is missing is a principled

framework that can support probabilistic inference over separately developed BNs.

In this thesis, we propose a theoretical framework, named Semantically-Linked Bayesian

Networks (SLBN), to fill this blank. SLBN is distinguished from existing work in that it

defines linkages between semantically similar variables and probabilistic influences are

carried by variable linkage from one BN to another by soft evidences and virtual

evidences. To support SLBN’s inference, we have developed two algorithms for belief

update with soft evidences. Both of these algorithms have clear computational and

practical advantages over the methods proposed by others in the past. To justify SLBN’s

inference process, we propose J-graph to represent the jointed knowledge of the linked

BNs and the variable linkages. Finally, SLBN is applied to the problem of concept

mapping between semantic web ontologies.

Semantically-Linked Bayesian Network:

A Framework for Probabilistic Inference Over

Multiple Bayesian Networks

by
Rong Pan

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

© Copyright Rong Pan 2006

To my family

ii

Table of Contents

1 Introduction... 1

1.1 The Motivations .. 1

1.2 Thesis Statement.. 3

1.3 Dissertation Outline... 4

2 Background and Related Work... 6

2.1 Bayesian Network ... 7

2.2 Iterative Proportional Fitting Procedure.. 12

2.3 Distributed Bayesian Network Models ... 14
2.3.1 Multiply Sectioned Bayesian Network (MSBN) .. 15
2.3.2 Agent Encapsulated Bayesian Network (AEBN)....................................... 17

2.4 Semantic Web.. 20
2.4.1 Probabilistic Extension of OWL ... 21
2.4.2 Information Integration in Semantic Web... 25

2.5 Summary ... 29

3 Belief Update in Bayesian Network Using Uncertain Evidence 30

3.1 Jeffrey’s Rule and Soft Evidence .. 32

3.2 Virtual Evidence.. 34

3.3 IPFP on Bayesian Network ... 37

3.4 Inference with Multiple Soft Evidential Findings ... 38
3.4.1 Iteration on the Network ... 39
3.4.2 Iteration on Local Distribution... 44
3.4.3 Time and Space Performance ... 47

3.5 Experiments and Evaluation.. 48

3.6 Summary ... 50

4 Variable Linkage... 52

4.1 Semantic Similarity ... 52

4.2 Variable Linkage ... 55
4.2.1 Pair-Wise Variable Linkage ... 55
4.2.2 Variable Linkage... 59
4.2.3 Expressiveness of Variable Linkage ... 62

4.3 Consistency between Variable Linkages and Linked Bayesian Networks 67

4.4 Summary ... 70

5 Evidential Inference with Variable Linkage .. 72

5.1 Informal Descriptions of Probabilistic Influence via Linkages....................... 72
5.1.1 Probabilistic Influence on Destination Variables..................................... 73
5.1.2 Probabilistic Influence on Other Variables.. 74

iii

5.2 Evidential Update on Destination BN ... 81
5.2.1 Single Variable Linkage.. 82
5.2.2 Multiple Variable Linkages... 86

5.3 Summary ... 90

6 J-Graph for SLBN .. 92

6.1 The Unaccessible Global Knowledge of SLBN.. 92

6.2 Assumptions for SLBN ... 94

6.3 Definition of J-Graph .. 101

6.4 Construction of J-Graph .. 102
6.4.1 Constructing the Structure of J-graph .. 102
6.4.2 Constructing the CPT of J-graph.. 106
6.4.3 Validate a SLBN by its J-graph .. 110

6.5 Inference on J-graph.. 112

6.6 Summary ... 115

7 Concept Mapping Utilizing SLBN... 117

7.1 Learning Probabilities from Web Data ... 119

7.2 Experiments... 120
7.2.1 Translating Taxonomies to BNs.. 121
7.2.2 Learning Uncertain Mappings.. 123
7.2.3 Inference with SLBN ... 123

8 Conclusion and Discussions ... 127

9 References and Bibliography... 130

iv

List of Figures

Figure 2.1 An example of Markov Blanket .. 10

Figure 2.2 ROSE communication graph... 19

Figure 2.3 Architecture of GLUE ... 27

Figure 3.1 Example 3.1... 33

Figure 3.2 Example 3.3... 40

Figure 3.3 The BN of Example 3.4... 47

Figure 3.4 Running result of Example 3.4.. 47

Figure 4.1 Variable linkages ... 62

Figure 4.2 Variable linkages for identical variables ... 64

Figure 4.3 Variable linkages maps one variable with the union of two variables 64

Figure 4.4 Variable linkages from a concept to its sub-concept....................................... 65

Figure 4.5 A variable linkage with context specific similarity... 66

Figure 4.6 A variable linkage for identical variables with different descriptions 66

Figure 4.7 An example of consistent linked BNs ... 70

Figure 5.1 Probabilistic influence from the source variables to the destination variables
via a variable linkage .. 74

Figure 5.2 Probabilistic influence from a variable linkage: Case 1. 78

Figure 5.3 Probabilistic influence from a variable linkage: Case 2. 79

Figure 5.4 Probabilistic influence from a variable linkage: Case 3. 80

Figure 5.5 The QLinkage for linkage B
DL in Figure 4.9.. 85

Figure 6.1 A car diagnosis BN and its derived Linked BNs... 98

Figure 6.2 Crossed linkages.. 101

Figure 6.3 J-graphs for linked BNs in Figure 4.1 ... 104

Figure 6.4 The J-graph for the example in Figure 4.9 .. 109

Figure 6.5 An SLBN with two variable linkages.. 113

Figure 6.6 The probabilistic dependencies between variables across linkages 115

Figure 7.1 Apply SLBN to ontology mapping ... 118

Figure 7.2 Cross-classification using Text Classifiers on Web Data.............................. 120

Figure 7.3 Bayesian network for ACM topics’ AI sub-domain and DMOZ’s AI
subdomain ... 122

v

List of Tables

Table 3.1 Experiment 1... 49

Table 3.2 Experiment 2... 50

Table 7.1 Statistics of the experiment... 121

Table 7.2 Five most similar concepts and most different concepts in the learning result.
The root concept’s name is omitted. ... 123

1

1 Introduction

1.1 The Motivations

At the present time, Bayesian networks (BN), the presumably the most popular

uncertainty inference framework, are still widely used as standalone systems. When the

problem scale is large, a large network slows down the inference process and makes itself

difficult to be reviewed or revised. When the problem itself is distributed, domain

knowledge has to be centralized and unified before a single BN can be created for the

problem. Alternatively, separate BNs describing related sub domains or different aspects

of the same domain may be created, but it is difficult to combine them for problem

solving –– even if the interdependent relations between variables across these BNs are

available. This is because, among other things, individual BNs may adopt different

variables with identical or similar semantics, and even identical variables may assume

different distributions in different BNs.

Much research has been done recently to address this issue, including the most

notable Multiply Sectioned Bayesian Network (MSBN) by Xiang [42][43][44] and Agent

Encapsulated Bayesian Network (AEBN) by Bloemeke and Valtorta [2][3]. However,

these existing approaches still have restrictions in consistency, applicability and

expressiveness. For example, in the scenario of MSBN, a global BN is sectioned into

subnetworks with shared variables. Each subnet is occupied by an agent and all subnets

must be strictly consistent with each other in that the shared variables are identical and all

of the parents of a shared variable must appear in one subnet. In essence, the domain

2

knowledge of MSBN, although distributed in several subnets, is accessed as a single BN

in inference. AEBN is proposed for modeling sensor networks, where each agent utilizes

a BN to represent its domain knowledge and exchange beliefs with other agents via

connections between identical variables. These connected variables are allowed to have

different distributions, but only the belief of the evidence side is finally respected at the

end of the inference. This is done by treating the exchanged belief as soft evidences when

the inference is carried across different BNs. However, AEBN does not address the issue

of how to propagate probabilistic influences when multiple connections are available

between two BNs, nor does it discuss how the linkages should be created or how to

resolve the conflicts caused by multiple connections. Most importantly, none of the above

approaches offers solutions for representing probabilistic similarities between variables in

probability-theoretic terms, which is required when we want to link similar but not

identical variables across BNs. These and other related issues are the focus of our

investigation.

Probabilistic reasoning in distributed BN models can be utilized in many applications,

such as multi-agent systems, data mining, and sensor networks. Besides, Semantic web

also provides a use case. Separately developed Semantic web ontologies on the same or

overlapped domain may differ in terminologies and taxonomical organizations, or use

polysemantic terms to refer different concepts. Although similar concepts can be easily

described by probabilities, existing approaches [13][30][38] fail to completely address

uncertainty in concept mappings. In a previous work, Ding, Peng and Pan have developed

a Bayesian network based framework, BayesOWL, to address representation and

reasoning with uncertainty within a single ontology [11][12]. This framework makes it

3

possible for us to use SLBN to model ontology mappings, and discover new concept

mappings by probabilistic inferences.

1.2 Thesis Statement

In this thesis, Semantically-Linked Bayesian Networks (SLBN) is proposed as a

theoretical framework to support probabilistic reasoning across multiple BNs. This

framework is distinguished from existing work in that the SLBN defines linkages

between semantically similar variables and through these linkages belief update can be

conducted over separately developed BNs.

The representation of semantic similarities in SLBN is the variable linkage, whose

role is to carry probabilistic influence from one BN to another. The probabilistic

influences from other BNs, due to their nature of uncertainty, are treated as soft evidences

and virtual evidences. Since inference with soft evidences does not obey Bayes’ rule, two

algorithms are developed in this thesis for belief update with uncertain evidences. These

algorithms, which incorporate Jeffrey’s rule for conditioning and IPFP (iterative

proportional fitting procedure) for modification of joint distributions, are further

expanded to respect the semantics of variable linkages and to support the inference of

SLBN.

A graphical probabilistic model, J-graph, is proposed to describe the jointed

knowledge of SLBN. Among other things, J-graph can be used to study the consistency

of SLBN and help to justify the inference of SLBN.

SLBN is designed to support various applications. In the last part of this thesis, SLBN,

together with BayesOWL [11][12], is applied to discover concept mappings in semantic

4

web ontologies. Experiments show that this approach discovered new complex concept

mappings that existing approaches are unable to find.

1.3 Dissertation Outline

This dissertation is outlined as follows. In Chapter 2, we introduce the background of this

work, including Bayesian networks and the Semantic Web technology, and briefly review

the previous researches related to this work.

Chapter 3 discusses the relations between existing belief update methods for

uncertain evidence and proposes two soft evidential update methods, which integrates

traditional BN inference methods, IPFP and virtual evidences. These soft evidential

update methods will be used in the SLBN inference methods.

In Chapter 4, we define semantic similarities between concepts and use variable

linkages to represent them in BN. We also discuss the expressiveness of variable linkages

in this chapter.

Chapter 5 presents SLBN’s inference method. First, we give an informal description

about how the probabilistic influences should be propagated and then detailed

implementations are provided by pseudo codes.

Chapter 6 discusses about the global knowledge of SLBN. Since an SLBN should

have a global knowledge, three assumptions are proposed to ensure the linked BNs and

the linkages in an SLBN are consistent to the global knowledge. J-graph is then proposed

to represent the jointed knowledge of the linked BNs and the variable linkages. Finally, J-

graph is used to justify the inference method of SLBN.

In Chapter 7, as an application example, we use SLBN to discover concept mappings

between different semantic web ontologies. Experiments are provided in this chapter.

Chapter 8 concludes this dissertation and lists some interesting issues for future

research.

We adopt the following notations in this thesis. A BN is denoted as N. X , Y, and Z are

for sets of variables in a BN, and x or xi are for a configurations of the states of X. Capital

letters A, B, C are for single variables. Capital letters P, Q, and R, are for probability

distributions; the subscription of P, Q, and R denotes the origin of the probability

distribution. V is for a set of nodes in graphs.

6

2 Background and Related Work

The Bayesian network was first introduced to the AI community by Pearl [33][35] as a

graphic model to represent the uncertainty of domain knowledge and to reason with such

uncertain knowledge. The exact inference method of BN has been proved to be NP hard

[7], and exact inference methods, such as Junction-Tree [26], are thus of exponential time

complexity. Approximate inference methods, such as loopy propagation [28] and

stochastic simulation [33], are invented for reasoning with large scale networks.

The distributed model of BN is investigated for large scale and distributed problems.

Multiply sectioned Bayesian network (MSBN) by Xiang [42][43][44] and Agent

Encapsulated Bayesian Network (AEBN) by Bloemeke and Valtorta [2][3] are two

prominent examples. MSBN aims to section one large BN into smaller subnets and

deploy them to agents. The consistency of cross subnet linkage is guaranteed by the

sectioning method. AEBN aims to propagate the beliefs between separate agents and the

consistency of variables’ distributions is ensured by the system’s semantics.

Another background knowledge related to our proposed research is Semantic Web

[36], which comes with the rapid expansion of computer network and the World Wide

Web and the need for machines/programs to understand web page content. Semantic web

describes information resources using URI and XML namespace mechanism, which is

formalized as the Resource Description Framework (RDF) [47]. The vocabulary of

semantic web resources is defined as a set of ontologies in the format of RDF schema.

Since multiple ontologies are often involved, ontology mapping and translation become

7

necessary for information integration in semantic web. Most existing works in this

direction are logic based [14][18], which ignore the uncertainty in the mapping. A few

exceptions include GLUE [13] from the University of Washington and OntoMapper [38]

from UMBC, which have addressed uncertainty to some extent.

As current ontology description languages do not capture all the relations between

concepts, uncertainty extension of ontology has been an interesting research issue. Ding

[11][12] proposed a framework called BayesOWL which extends OWL to allow

expression of probability information and then converts ontologies to BNs by a set of

translation rules and procedures. Holi’s work similarly aims to approximate the concept

overlaps of a semantic web taxonomy using Bayesian network [17].

2.1 Bayesian Network

Bayesian network (BN) is an increasingly popular knowledge representation framework

for uncertainty. It provides a systematic way to represent interdependency relationships

among propositions, each of which is considered as a random variable with a finite set of

states as its outcomes. Intense research on BN has been conducted in recent years, as

reflected by a rich body of publications in the literature [45]. In what follows, we briefly

review the basics of BN and techniques relevant to our research agenda.

Let A and B be two propositions, normally we use P(A) to denote unconditional or

prior probability, P(A|B) the conditional or posterior probability. P(V) denotes the Joint

Probability Distribution (JPD) of the entire domain. If X is a subset of V, P(X) is referred

to as a marginal distribution, and from JPD we can calculate P(X) using the following

formula

8

∑=
XV

XVXPXP
\

)\,()(. (2.1)

The theoretical basis of Bayesian network is Bayes’s rule [1], which underlies all

probabilistic inferences in BN:

)(
)()|(

)|(
AP

BPBAP
ABP = , (2.2)

where A and B are propositions.

Definition 2.1 (Bayesian network [19]): A Bayesian network is a graph in which the

following holds:

1. A set of variables and a set of directed edges between variables.

2. A finite set of mutually exclusive states for each variable.

3. A directed, acyclic graph (DAG).

4. A conditional probability table (CPT) for each variable that quantifies the effects

of its parents.

As can be seen shortly, each Bayesian network corresponds to a particular probability

distribution over all variables of a BN. One the other hand, however, one probability

distribution can be represented by many BNs with the same variables but different

topological structures.

In this thesis we use d(A) to denote the number of the states for variable A, and

the total number of the state configurations for a set of variables X is calculated as

∏=
i

iXdXd)()(. An edge from variable A to B is denoted by A→B, and a directed

9

path from variable A to B is denoted by path(A, B), a path from A to C via B is

denoted by path(A, B, C).

Let x = {X1 = x1, X2 = x2, … , Xn = xn } be a set of propositions in a Bayesian network,

where {X1, X2, … , Xn} is the set of the variables in the BN. The chain rule for Bayesian

network is described as below:

 ∏=
i

ii XparentxPxP))(|()(, (2.3)

The chain rule is based on a conditional independence assumption associated with BN,

which can be described by the notion of d-separation in terms of the network’s graphic

structure. Two distinct variables A and B are said to be d-separated if, for all paths

between A and B, there is an intermediate variable V such that either

1. the connection through V is serial or diverging and V is instantiated, or

2. the connection is converging, and neither V nor any of V’s descendants have

received evidence.

If A and B are not d-separated, we call them d-connected. In a BN, if A and B are d-

separated, they are in independent of each other. In other words, if A and B are d-

separated, the changes in the certainty of A have no impact on the certainty of B [19].

The Markov blanket of a variable refers to the variable’s parents, children and

children’s other parents. If all variables in the Markov blanket are instantiated, the

Markov blanket of variable A d-separate A from the rest of the BN, and hence A is

independent of any other variables. Let πA denote the parents of A and λA denote the

10

children and children’s other parents of A, MA= πA +λA. Figure 2.1 depicts an example of

Markov blanket.

Figure 2.1 An example of Markov Blanket

It has been proved that exact inference in Bayesian network is NP-hard [7].

Nonetheless, a number of algorithms have been developed to exploit the network

structure for efficient computation for probabilistic inferences in BN. Belief propagation

[35] and Junction-Tree [26] are two of the most popular exact BN inference methods.

Belief propagation is based on local message passing and hence can work only for

polytree to avoid rumors (double counting probability influence in belief propagation).

Junction-Tree method, on the other hand, works for networks of any kinds of topology.

Several inexact algorithms are developed for large scale problems with approximate

solutions (e.g., stochastic sampling [34] and loopy propagation [28]).

Junction-Tree method, which will serve as a basis for developing some of our

problem solving algorithms in this research, is briefly reviewed here. This method

11

transforms a Bayesian network into a tree structured graph of large nodes. It first

moralizes the network by adding edges between nodes that share children and removing

the directions of all links. Then, the moral graph is triangulated so that all cycles longer

than 3 have a chord. In the triangulated graph, each complete subgraph is recognized as a

clique. Cliques are connected, forming a Junction-Tree. The probabilities of cliques are

called potentials, on which operations are defined as a set of algebra. Inference is done by

passing and unifying potentials between adjacent cliques in the Junction-Tree. Four

procedures are used for local message passing: Absorption, DistributeEvidence,

CollectEvidence, and EnterEvidence. Absorption specifies the method to unify the

potentials of adjacent cliques. CollectEvidence calls adjacent cliques and absorbs from

them after the call returns. DistributeEvidence absorbs from the clique that calls it and

then call other adjacent cliques. EnterEvidence changes the potentials of a clique to

represent an observation. Compared with other exact inference methods, Junction-Tree

inference method is efficient in that its computation cost is exponential to the size of the

largest clique, not the size of the entire network.

For Junction-tree and other belief update methods mentioned above, evidences are

instantiations of variables. However, not all evidences are of certainty. Belief update in

Bayesian network with uncertain evidences will be discussed in Chapter 3 where we

introduce our own new method which supports inference algorithms of SLBN.

Some methods for belief update with uncertain evidences, including our own, utilize

the IPFP procedure, which is briefly reviewed next.

12

2.2 Iterative Proportional Fitting Procedure

Iterative proportional fitting procedure (IPFP) is a mathematical procedure that modifies

a joint distribution to satisfy a set of probability constraints, which are distributions of

subset of variables. IPFP was first published in [22], and shortly after was proposed as a

procedure to estimate cell frequencies in contingency tables under some marginal

constraints [10]. Csiszar [6] provided a convergence proof for IPFP based on I-divergence

geometry. Vomlel rewrote a discrete version of this proof in his PhD thesis [41]. IPFP was

extended in [4] and [9] as conditional iterative proportional fitting procedure (CIPFP) to

also take conditional distributions as constraints, and the convergence of CIPFP was

established for the finite discrete case.

I-divergence (also known as Kullback-Leibler distance or cross-entropy) is a measure

of the distance between two joint distributions P and Q over X:







∞+

<<∑= >
otherwise

QPif
xQ
xP

xPQPI xP)(
)(

log)()||(0)((2.4)

where QP << means Q dominates P (i.e., }0)(|{ >xPx }0)'(|'{ >⊆ xQx). 0)||(≥QPI

for all P and Q, the equality holds only if QP = .

A probability constraint)(XYR ⊆ to distribution)(XP is a distribution on Y. We

say)(XQ is an I1-projection of)(XP on a set of constraints R if)||(QPI is smallest

among all distributions that satisfy R.

13

For a given distribution)(0 XQ and a set of consistent1 constraints R = {R(Y1), R(Y2),

… , R(Ym)}, IPFP converges to)(* XQ which is an I1-projection of)(0 XQ on R.)(* XQ ,

which is unique for the given)(0 XQ and R, can be computed by iteratively modifying

the distributions according to the following formula, each time using one constraint in R:







⋅

=
=

−
−

−

otherwise
YQ

YR
XQ

YQif
XQ

ik

i
k

k

k
)(

)(
)(

0)(0
)(

1
1

1

where m is the number of constraints in R, and 1)mod)1((+−= mki determines the

constraint used at step k. For clarity, in the rest of this paper, we write the above formula

as

)(
)(

)()(
1

1
ik

i
kk YQ

YR
XQXQ

−
− ⋅= (2.5)

The convergence of IPFP is proved by Csiszar [6] and Volmel [41] on discrete

distributions. For the continuous case, it still remains as an open question. An important

theorem in Volmel’s proof ([41] Theorem 2.5) is re-stated below:

Theorem 2.1: Let Q0 be the initial distribution on variables set X, C1, .., Cn be a set of

probability constraints on X, S1, … , Sn be sets of joint probability that satisfy the

constraints C1, .., Cn respectively, and S = n Si ? Ø. Define Qi recursively by letting Qi be

the I1-projection of Qi-1 on Cj, where j = (i - 1) mod n + 1. Then the sequence of

probability distributions Qn converges to the I1-projection of Q0 on {C1, … , Cn}.

1 A set of constraints R is said to be consistent if there exists a distribution Q(X) that satisfies all Ri in R. Obviously, two constraints
are inconsistent if they give different distributions to the same variable. More discuss of this matter is given in Section 3.7.

14

We will use this theorem to prove the convergence of our soft evidential update

method later in Chapter 2.

2.3 Distributed Bayesian Network Models

Inference across multiple intelligence systems involving uncertainty has been a concern

of the AI community for over ten years. Distributed Bayesian networks models are

mostly considered in various multi-agent scenarios. An agent is commonly defined as an

individual software and/or hardware entity that responds automatically to the

environment. In a multi-agent system, each agent has only partial knowledge or a specific

perspective of the domain, pursues a local set of goals, and exchanges its observations or

beliefs with other agents in the system. If the domain (or some of its aspects) is modeled

by a Bayesian network, the network shall be distributed in some fashion among these

agents. The major issues of this area have been addressed in the applications of data

mining, multi-agent system and sensor networks are as follows:

1. How to decompose the network among the agents?

2. How to exchange local beliefs and observations via agent communications?

3. How to maintain the global consistency in the system?

Several approaches have been proposed for distributed BN in multi-agent scenarios,

including AEBN (Agent Encapsulated BNs), MSBN (Multiply Sectioned BN), and object

oriented BN [21]. Each of these approaches makes its own assumptions either to

circumvent or solve the aforementioned issues. For example, in AEBN, the Bayesian

networks are originally encapsulated in each agent while some variables are shared

15

between agents. By assuming additional independence relations beyond the definition of

Bayesian networks, agents use soft evidence to propagate beliefs of shared variables.

Global consistency of AEBN is certified by detecting and eliminating the rumor problem.

In MSBN, the primary objective is to decompose a given global network into sub

networks. The global Bayesian network must conform to a hyper-tree structure to be

soundly sectioned. The message passing procedures between sections are processed

locally. Global consistence is certified by the sectionable graph structure and message

passing strategy. These two representative approaches are reviewed in details in the next

subsections.

2.3.1 Multiply Sectioned Bayesian Network (MSBN)

Multiply Sectioned Bayesian Network by Xiang [42][43][44] is a distributed multi-agent

probabilistic reasoning system that divides a large Bayesian network into multiple

sections and distributes them to agents. Xiang starts with five basic assumptions on ideal

knowledge representation formalisms for such kind of systems:

1. Each agent’s belief is represented by probability.

2. An agent can in general influence the belief of each other agent through direct

or indirect communication but can only communicate directly to another agent

with shared variables.

3. A simpler agent organization is preferred.

4. A DAG is used to structure each agent’s knowledge.

5. Within each agent’s sub domain, a JPD is consistent with the agent’s belief. For

shared variables, a JPD supplements an agent’s knowledge with others’.

16

Following these assumptions, MSBN conforms to a hyper-tree multiple sectioned

directed acyclic graph (MSDAG) structure. The definition of hyper-tree and hyper-tree

MSDAG are listed below[44]:

Definition 2.2 (MSBN): let G = (V, E) be a connected graph sectioned into sub

graphs {Gi = (Vi, Ei)}. Gis are organized as a connected tree ? , where each node is

labeled as Gi and each link between Gk and Gm is labeled by the interface Vkn Vm such

that for each i an j, Vin Vj is contained in each sub graph on the path between Gi and Gj in

? . Then ? is a hypertree over G. Links between the sub graphs of ? are called

hyperlinks. A hyper-tree ? is a hypertree MSDAG if for each shared node, there is one

and only sub graph Gi that contains all its parents.

A hyper-tree MSDAG is transformed into a tree or forest of a set of Junction-Trees.

The messages passed between sectioned BNs contain joint probabilities on hyperlink

labels. Xiang developed a protocol analogous to Junction-Tree message passing for

sectioned Bayesian networks to coordinate message passing and efficiently synthesizing

correct beliefs from the messages.

Compared with AEBN, MSBN has three advantages. First, it does not introduce any

additional relations between the variables besides the chain rule of the Bayesian network.

Second, the interdependence relation of variables still follows d-separation in the

composition of sections. While in AEBN, decedents could not affect the variables’ beliefs

in ascendants. Third, MSBN does not need to concern itself with the rumor problem since

its global structure is a DAG.

The limitations of MSBN are also obvious. To make a composition of MSBN sound,

MSBN introduces some restrictions into sectioning, some of them are very restrictive.

17

First, the local network’s belief on shared variables may not be consistent with their

global values. To solve this, MSBN requires a great communication cost between the sub

graphs. Second, distribution of domain knowledge is forced on shared variables: a hyper-

tree MSDAG requires that all parents of a shared node appear in one and only one sub

graph. This limits the expressiveness of MSBN in describing distributed knowledge.

Xiang does not emphasis the autonomous attribute in its agent settings. Valtorta and

Kim [40] note that it seems that “MSBNs were introduced as a method for parallel

distributed inference within a single Bayesian network” rather than for modeling

uncertainty for autonomous software agents.

2.3.2 Agent Encapsulated Bayesian Network (AEBN)

Agent Encapsulated Bayesian Network, proposed by Bloemeke and Valtorta [2][3][20],

is a system in which each agent employs a Bayesian network as its internal knowledge

representation of the domain, and exchanges beliefs with each other along shared

variables. The variables of an encapsulated Bayesian network are divided into three

groups: 1) those that are only used within the agent (local set), 2) those that other agents

have better knowledge of (input set), and 3) those that currently has better knowledge

than other agents (output set). An agent may want to get a better knowledge of the nodes

in the input set from the publisher agent, and if incoming information is void, it assigns

estimated values to them. An agent shares the distributions of nodes in the output set to

subscriber agents via soft evidences. The details of the soft evidential update method that

AEBN utilizes is given in Section 3.4.

18

To update an agent’s distribution P(V) with new soft evidences Q(se1), Q(se2), … ,

Q(sen) for a set of variables X = { X1, X2, … , Xn }, the following formula is used:

),...,,(),...,,|\()(2121 nn seseseQseseseXVPVQ ⋅=

),...,,(
),...,,(

)\(
21

21
n

n

seseseQ
seseseP

XVP
⋅= ,

where),...,,(21 nseseseQ is the I1-projection of P(X) on Q(se1), … , Q(sen).

From above, we may see AEBN extends BN by imposing additional interdependence

relations beyond the semantics of BN. Specifically, when we look at the global network,

some parent nodes are not influenced by its descendent nodes’ states if they are in the

input set since their values are fixed by the soft evidences. In AEBN, relations between

agents are asymmetric.

To maintain the global consistence, agents must find the redundant influences

introduced by the circle connections and eliminate them. This issue is called the rumor

problem. Figure 2.2 shows an example of AEBN, where four agents communicate using

the shared variables S1, R1 and R2. Agents Observer1 and Observer2 receive the

distribution of variable S1 from the Sensor agent, and send out their observations to the

Supervisor agent, the influence of the Sensor agent is doubled in the Supervisor agent.

The final result L is computed using the following formula:

∑=
21,

211)()(),|()(
RR

RPRPRRLPLP ,

and by considering the observers’ local network, we get

∑=
21 ,

1121111)]()|()][()|()[,|()(
RR

SPSRPSPSRPRRLPLP

19

where P(S1) is double counted.

Figure 2.2 ROSE communication graph

Bloemeke [3] proposed two algorithms to remove this kind of redundant influences.

The first approach utilizes flow network to discover where this kind of redundant

influences appear and then eliminate them by compensating the repeatedly counted

propositions from preceding agents. The second approach is a centralized algorithm that

involves automatic construction of an auxiliary three-layered local Bayesian network. By

carefully manipulating the CPTs of this local Bayesian network and propagating beliefs,

distributions of the first layer nodes are fed back to the original distributed networks.

AEBN has limitations in expressing more complicated relations between variables.

Also it does not address the issues of consistency when multiple connections between

two BNs are present. It only discusses the rumors between networks, not the rumors

between the connections. AEBN is designed for a specific application domain and so it is

not justified in a principled manner, nor is its applicability well addressed.

20

2.4 Semantic Web

The current World-Wide Web contains vast volumes of data, of which the majority are

web pages organized for human consumption only. Machines and programs understand

and process the information provided by such documents. Semantic Web is an attempt to

solve this problem by associating meanings/semantics with the data through carefully

defined ontologies of the concepts in a way machines can understand.

The Resource Description Framework (RDF) [47][48][49], a collaborative effort by a

number of metadata communities, is a standard general assertional model to represent the

resources on the web. It is a framework that supports resource description and metadata

for a variety of applications. RDF uses XML as its syntax and identifies resources by

using URI and XML namespace mechanisms. The basic building blocks of RDF, RDF

triples, are represented as “subject”, “predicate” and “object”. The “predicate” is also

known as the property of a triple. In general, a triple can be read as “the <subject> has

<predicate> <object>” [48]. RDF is an assertional logic, in which each triple expresses a

simple proposition [49]. One triple does not change the meaning of other triples.

RDF Schema [50] is used to control the vocabulary used to define the resources in

RDF. Classes and properties are created as descriptions of concepts and relations.

Property can describe a relationship between classes and properties, restrictions to one

property’s domain and range, and annotations to any RDF terms. However, RDF does not

specify any inference method. Built on top of RDF and RDF Schema, Web Ontology

Language (OWL) [52] provides a richer set of vocabulary to describe the resources and

their relations, and its semantics supports description logic inferences.

21

Ontology is a specification of conceptualization. More formally, ontology is a set of

vocabulary describing the conceptualization of a particular domain [46]. It provides a

common understanding about the domain knowledge. For a semantic web application,

ontology is used to capture the concepts and the relationships between concepts. Since

knowledge about its domain is encoded by this ontology, machines or agents then can

reason about the domain and adjust their future behaviors accordingly.

OWL [52] is a new web ontology language recommended by W3C. An OWL

ontology has zero or more headers, followed by zero or more classes, properties and

instances. OWL assigns specific meaning to certain RDF triples using OWL vocabulary.

OWL classifies the instances into two sorts: the datatype instances consist of the values

that belong to XML Schema datatypes, the object instances consist of individual objects

that are instances of classes described within OWL or RDF. Correspondingly, there are

two kinds of properties in OWL: ObjectProperty and DatatypeProperty. OWL includes

three versions of increasingly complex languages: OWL-Lite, OWL-DL and OWL-Full.

2.4.1 Probabilistic Extension of OWL

The OWL specification does not include any principled means to represent and inference

with uncertainty information. However, uncertain information can by found in almost

every aspect of ontology engineering. For example, in domain modeling, besides

knowing that “A is a subclass of B”, one may also know and wish to express that “A is a

small subclass of B”; or, in the case that A and B are not logically related, one may still

wish to express that “A and B are largely overlapped with each other”. In ontology

reasoning, one may want to know not only if A is a subsumer of B, but also how close A

is to B; or, one may want to know the degree of similarity even if A and B are not

22

subsumed by each other. Moreover, a description (of a class or object) one wishes to

input to an ontology reasoner may be noisy and uncertain, which often leads to

generalized conclusions. Uncertainty becomes more prevalent in concept mapping

between two ontologies where it is often the case that a concept defined in one ontology

can only find partial matches to one or more concepts in another ontology.

BayesOWL ([11][12]) is a framework which augments and supplements OWL for

representing and reasoning with uncertainty based on Bayesian networks. This

framework provides a set of rules and procedures for direct translation of an OWL

ontology into a BN structure (a directed acyclic graph or DAG) and a method based on

IPFP that utilizes available probability constraints about classes and interclass relations in

constructing the conditional probability tables (CPTs) of the BN. The translated BN,

which preserves the semantics of the original ontology and is consistent with the

probabilistic constraints, can support ontology reasoning, both within and across

ontologies, as Bayesian inferences.

Structural translation The general principle underlying the structural translation

rules is that all classes (specified as “subjects” and “objects” in RDF triples of the OWL

file) are translated into nodes in BN, and an arc is drawn between two nodes in BN if the

corresponding two classes are related by a “predicate” in the OWL file, with the direction

from the superclass to the subclass.

The model-theoretic semantics of OWL treats the domain as a non-empty collection

of individuals. If class A represents a concept, the node it is translated to is treated as a

binary random variable of two states a and a , and we interpret)(aAP = as the prior

probability or one’s belief that an arbitrary individual belongs to class A , and)|(baP as

23

the conditional probability that an individual of class B also belongs to class A .

Similarly, for)(aP ,)|(baP ,)|(baP , and)|(baP , we interpret the negation as “not

belonging to”.

Control nodes are created during the translation to facilitate modeling relations

among class nodes that are specified by OWL logical operators, and there is a converging

connection from each of the concept nodes involved in this logical relation to its specific

control node. There are five types of control nodes in total corresponding to the five types

of logical relations: “and” (owl:intersectionOf), “or” (owl:unionOf), “not”

(owl:complementOf), “disjoint” (owl:disjointWith), and “same as” (owl:equivalentClass).

Constructing CPTs The nodes in the DAG obtained from the structural translation

step can be divided into two disjoint groups: XR, regular nodes representing concepts in

ontology, and XC, control nodes for bridging logical relations. The CPT for a control

node in XC can be determined by the logical relation it represents so that when its state is

“True”, the corresponding logical relation holds among its parent nodes. When all the

control nodes’ states are set to “True” (denote this situation as CT), all the logical

relations defined in the original ontology are held in the translated BN. The remaining

issue is then to construct the CPTs for node in XR so that P(XR|CT), the joint distribution

of all regular nodes in the subspace of CT, is consistent with all the given probabilistic

constraints about classes and relations between classes. These constraints include, most

likely, priors for classes P(C), conditionals P(C|D) for relations between classes C and D.

Several suggestions have been made to encode probability constraints in semantic web

languages (e.g., [15] with RDF). These constraints can be obtained from the ontology

24

designers or learned from data (an approach that learns these constraints from web is

described in Section 7.1).

In principle, IPFP can be applied to construct CPTs to satisfy all the given

probabilistic constraints. Two difficulties exist. First, direct application of IPFP may

destroy the existing interdependencies between variables (i.e., the given DAG becomes

invalid). Secondly, IPFP is computationally very expensive since every entry in the joint

distribution of the BN must be updated at each iteration. To overcome these difficulties,

Peng and Ding [37] developed an algorithm named D-IPFP that decomposes IPFP so that

each iteration only updates a small portion of the BN that is directly involved with the

chosen constraint, and the update is done only to CPTs while keeping the DAG of the

network intact [37]. In particular, when each of the given constraints involves only one

variable iC and a set of zero or more of its parents iS , (2.5) of IPFP becomes [12]:







≠∀=

⋅=

−

−
−

ijCQCQ
SCQ

SCQ
CQCQ

jjkjjk

iik

ii
iikiik

)|()|(
)|(

)|(
)|()|(

1

1
1

ππ

ππ
.

The BayesOWL framework can support common ontology reasoning tasks as

probabilistic inferences in the translated BN. For example, given a concept description e,

it can answer queries about concept satisfiability (whether P(e|CT) = 0), about concept

overlapping (how close e is to a concept C as P(e|C,CT)), and about concept subsumption

(find the concept which is most similar to e) by defining some similarity measures such

as Jaccard coefficient [39].

PR-OWL [8] is another probabilistic extension of OWL based on Multi-Entity

Bayesian Network (MEBN) [25]. Different from BayesOWL, which utilizes BN’s

25

propositional logic expressiveness, PR-OWL can express probabilistic models on first-

order logics level. To represent probabilistic information, PR-OWL provides an upper

ontology of uncertainty notations in OWL syntax. PR-OWL is currently in a preliminary

stage and examples are yet to present.

2.4.2 Information Integration in Semantic Web

Separately developed Semantic Web ontologies on the same or overlapped domain may

differ in terminologies and taxonomical organizations, or use polysemantic terms to refer

to different concepts. Ontology mappings are hence required to mark up the related

concepts in different ontologies. And, if possible, we want to translate the instances of

classes from one ontology to another using the mappings.

Current approaches for concept mapping between ontologies mostly use heuristics

from linguistic analysis of concept names and concept’s literal descriptions, heuristic

from language specific taxonomy structures, or machine-learning algorithms to discover

relativity between concepts from separate ontologies. These approaches use either

numerical measurements of concept similarities or logic expressions to describe

discovered mappings. When using numerical similarities for concept mapping discovery,

the similarities can be obtained from machine learning algorithms or supervised learning

algorithms. Text based learning algorithms or heuristics are widely used to calculate the

similarities using the text descriptions of concepts or sets of exemplars attached to the

concepts. Ontologies’ the local structure info is also utilized by some to help improve the

accuracy. Finally similarities are filtered by hard thresholds to judge if two concepts are

identical. Similar but not identical concepts are not respected by these approaches. Most

processes utilizing numerical similarities are automatic or semi-automatic. To logically

26

encode ontology mappings, logic axioms are used to model the relations between the

concepts and these axioms are created manually by domain experts. Logic can encode

more expressive and complex mappings than numerical similarities but is hard to be

automatically created.

 GLUE [13] is a successful system by the University of Washington in exhibiting a

standard model of similarity based ontology mapping system. Given one concept in

ontology A, GLUE aims to calculate the similarity of this concept and all other concepts

in ontology B, and find the most similar one. GLUE is capable of working with different

kinds of similarity measurements. It applies multiple machine learning algorithms and

uses a meta learner to combine the learning results. Learning results are represented as

joint probabilities, which are further translated into a similarity matrix by applying

similarity measurements. Finally, a Relaxation labeler module takes the similarity matrix

along with domain constraints and other heuristics knowledge to search for the best

mapping configuration. GLUE uses text, practically a set of instance documents of

concept and the concept’s name, as raw data for similarity calculation. Naïve Bayes

learning method is used to classify instance documents into four sets:),(BAP ,),(BAP ,

),(BAP , and),(BAP and a set of joint probabilities is calculated based on these sets.

27

Figure 2.3 Architecture of GLUE

OntoMapper [38] is another similarity approach by UMBC, which improves the text-

based classification result by conducting probability reasoning using local structure. First,

raw similarity scores between concept pairs is obtained by using the Rainbow classifier

[39] system on a set of instance documents. Then, two algorithms are provided to refine

the results. The first one is a simple heuristic method which realizes subsumption based

on the majority rule: for any non-leaf node, if the ratio of its children that map to a

particular node is greater than or equal to a user-specified threshold, then these children’s

mappings along with the values associated are propagated up to the parent node. The

second one is a probabilistic approach based on Bayesian reasoning, in which some

heuristics are used to respect the structures of the taxonomies.

28

OntoMerge from Yale [14][51] is an online ontology translation system which

translates an ontology A into a new DAML+OIL ontology B that captures the same

semantic information. It is built on top of PDDAML (PDDL-DAML Translator) [54]

(based on Jena [53]) and OntoEngine (an inference engine) (based on JTP [55]). Users

need to first specify the relations between mapped variables using logical expressed

bridging axioms. Axioms use vocabulary from items from both source and target

ontologies and use namespaces to avoid duplicate names. At first, OntoMerge calls

PDDAML to translate ontology B into a Web-PDDL file, and then feeds this file to

OntoEngine. OntoEngine retrieves a merged ontology C from its library which covers A

and B. OntoEngine then tries to load ontology C in by first using PDDAML to translate it

to Web-PDDL file. At last, OntoEngine loads A in, translates it, and calls PDDAML

again to translate the Web-PDDL results back into DAML+OIL. The merged ontology C

is obtained by taking the union of the terms and axioms defining them. Bridging axioms

that relate the terms in A to the terms in B through the terms in C should also be added.

Since all the axioms used are specified by human experts, this approach is semi-

automatic.

PROMPT from Stanford [30] is a user-interactive methodology of ontology mapping

and alignment. PROMPT provides mapping suggestions based on linguistic analysis of

the given ontologies, and asks users to select an operation. Then PROMPT applies user’s

operation, identifies conflicts between current operation and previous operations and

update its suggestions. Conflicts are identified by a set of heuristic from domain experts.

29

2.5 Summary

In this chapter, we presented the background of this thesis research and related techniques

in the areas of Bayesian networks and Semantic Web.

As we can use BNs to represent semantic web ontologies, distributed BN models can

further help to conduct probabilistic reasoning across multiple semantic web ontologies,

and hence help with the ontology mapping problem. However, existing approaches of

distributed Bayesian network models, such as MSNB and AEBN, are not satisfactory for

such purposes. MSBN is designed for decomposing global domain knowledge into pieces

so that they can be deployed into agents. AEBN is proposed in the scenario of sensor

networks and is not well justified for general purposes. In both MSBN and AEBN,

similar but not identical variables cannot be modeled to link separate BNs.

Moreover, semantic web ontologies are mostly separately developed and deployed.

Two ontologies may be defined on the same domain but represent different

conceptualization of that domain, or capture different aspects of the domain, and use

different terminologies. Also ontologies of different but relative domains may share

common or similar concepts, and finding and modeling the shared concepts is crucial to

collaborative inference using different ontologies. The existing ontology mapping

approaches are aimed at finding simple identical mappings, while the OWL syntax

actually defines complex relations between concept classes, including equivalent, union,

disjoint, and intersection.

30

3 Belief Update in Bayesian Network Using Uncertain

Evidence

As will be seen later in Chapters 4 and 5, inference across different BNs in our new

framework shall be carried out by exchanging probabilistic influences between them via

variables of the same or similar semantics. In BN, these probabilistic influences can be

conveniently represented as external findings, named as uncertain evidential findings.

Here the term “uncertainty” refers to the fact that these influences are modeled as

probability distributions over these variables, not instantiations to their states. In this

chapter, we consider the problem of updating beliefs in Bayesian Networks (BN) by

uncertain evidential findings. The algorithms developed in this chapter will serve as a

basis for probabilistic inference in our SLBN.

It is easy to tell hard evidence from uncertain evidence. However, the difference

between soft and virtual evidence, and even their exact semantics, are still subject for

debate. We take the following in this paper: for a soft evidence, the observation (e.g.,

)(AQ) is to be believed with certainty although this observation itself is about the

uncertainty of the states A is in. In contrast, for a virtual evidence, we are uncertain about

the observations themselves. Consequently, soft evidence (e.g.,)(AQ) should be

preserved in the updated belief (or put in other words, the original joint distribution of the

BN should be modified to be consistent with)(AQ). On the other hand, reasoning with

virtual evidences requires preservation of only the given likelihood ratios, not the

probabilities of evidential variables. This distinction between soft and virtual evidences is

31

crucial in understanding our proposed new methods, and it will be further discussed later

in Section 5.

There are three main methods for revising the beliefs of a BN with uncertain evidence:

virtual evidence method [35], Jeffrey's Rule [18], and iterative proportional fitting

procedure (IPFP) [41]. The virtual evidence method, as its name indicates, requires the

evidential findings to be in the form of likelihood ratios, while Jeffrey’s rule works with

evidential findings in the form of probability distributions and thus suitable, at least in

theory, for soft evidence. IPFP’s power lies in its ability to modify a joint distribution to

satisfy multiple probability constraints through a simple iterative process. The virtual

evidence method can easily be incorporated into the BN framework by adding a virtual

evidence node to the network. In contrast, both Jeffrey’s rule and IPFP update beliefs by

manipulating the joint probability distributions, which is not directly supported by BN

inference methods.

This paper reports our analysis of these three belief update methods and their

interrelationships. We will show that when dealing with a single evidential finding, the

belief update of both the virtual evidence method and Jeffrey‘s rule can be viewed as

IPFP with a single constraint. Also, we present two methods we developed for belief

update with multiple soft evidences and prove their correctness. Both of these methods

integrate the virtual evidence method and IPFP, and they can be easily implemented as a

wrapper on any existing BN inference engine.

32

3.1 Jeffrey’s Rule and Soft Evidence

Consider a Bayesian network N over a set of variables X modeling a particular domain. N

defines a joint distribution)(XP . When giving)(YQ , an observation of a probability

distribution on variables Y ⊆ X, Jeffrey's rule claims that the distribution of all other

variables under this observation should be updated to

)()|\()\(ii i yQyYXPYXQ ∑= , (3.1)

where yi is a state configuration of all variables in Y. Jeffrey's rule, also known as J-

conditioning [36], assumes)|\()|\(YYXPYYXQ = , i.e., invariance of the conditional

probability of other variables, given Y, under the observation. Thus

)(
)(

)(

)(
)(

),\(
)()|\()(

YP
YQ

XP

YQ
YP

YYXP
YQYYXPXQ

=

=

=

 (3.2)

Here)(YQ is what we called soft evidence. Analogous to conventional conditional

probability, we can also write)(YQ as)|(seYP , where se denotes the soft evidence

behind the soft evidential finding. Y is called the evidence variables of se.)|(seYP is

interpreted as the posterior probability distribution of Y given soft evidence se. Then (3.1)

and (3.2) can be rewritten as:

)|()|\()|\(seyPyYXPseYXP iy ii
∑= (3.3)

and

33

)(
)|(

)()|(
YP

seYP
XPseXP = (3.4)

The invariance of conditional probability of Jeffrey’s rule can then be rewritten

as)|\(),|\(YYXPseYYXP = , which clearly indicates that evidence variables Y should

d-separate soft evidence se from all other variables YX \ .

Now consider an example from Pearl [35] for Jeffrey's rule:

Figure 3.1 Example 3.1

Example 3.1. Suppose we are given a piece of cloth, which may be in one of three colors:

blue, green, or violet, and may be sold the next day. The original joint distribution of the

two variables is given as:

12.0),(=soldblueP , 18.0),(=soldblueP ,

12.0),(=soldgreenP , 18.0),(=soldgreenP ,

32.0),(=soldvioletP , 08.0),(=soldvioletP .

Therefore the original belief about the color of the cloth (blue, green, violet) is (0.3,

0.3, 0.4). Now we observe the cloth by candle light, and find the color of the cloth has

probability (0.25, 0.7, 0.05). By equation (3.2), this soft evidence leads to the posterior

distribution

10.0)|,(=sesoldblueP , 15.0)|,(=sesoldblueP ,

28.0)|,(=sesoldgreenP , 42.0)|,(=sesoldgreenP ,

34

04.0)|,(=sesoldvioletP , 01.0)|,(=sesoldvioletP .

Our belief on variable “color” is now updated from the original (0.3, 0.3, 0.4) to (0.25,

0.7, 0.05) in the posterior distribution, consistent with the soft evidence. ¦

Pearl [36] has discussed the validity of the notation)|(seAP under the assumption

of Bayes’ rule. Obviously, the original Bayes’ rule does not agree with this notion since

virtual evidence se is not an event. Also, although we can think that se must be caused by

some events, those events are unknown to us (or even external to our model) and do not

carry any prior or posterior distributions. Moreover, se is meaningless if it does not

happen, e.g.,)|(seAP cannot be interpreted and calculated. However, its meaning is

clear when used as the condition in a conditional probability. Similarly, we use ve for

virtual evidence as the condition in a conditional probability. We use such notions in this

paper because they are intuitive and it allows us to treat the soft evidence and virtual

evidence as if they were events. If we agree that the prior distribution on X is a true

understanding of the domain, then we should also agree that evidence (hard, virtual or

soft) indicates an event, regardless of what form this event is, and that our belief (about

some or all variables) should be updated when presented with evidence regardless its type,

although the way the belief is to be updated may be different with different types of

evidence.

3.2 Virtual Evidence

Besides Jeffrey's rule, virtual evidence method is also used in belief update when the

uncertainty of observations of a variable’s states is given in the form of a likelihood ratio.

35

A likelihood ratio represents the observer's strength of confidence toward the observed

event. Suppose we are given variable A, which has states a1, a2, ..., an, its likelihood ratio

L(A) is defined as

))|)((:...:)|)((:)|)((()(2211 nn aaObPaaObPaaObPAL = ,

where)(iaOb denotes the event that we observed iaA = is True and)|)((ii aaObP is

interpreted as the probability we observe A is in state ai if A is indeed in state ia .

A virtual evidential finding can also involve more than one variable. Let ve be a

virtual evidence on Y ⊆ X with a likelihood ratio L(Y) (or L(ve)),

))|)((:...:)|)((()(11 mm yyObPyyObPYL = ,

where jy is a state configuration of all variables in Y, and m is the total number of

distinct configurations. The posterior probability of Y, given the evidence, is

)),()(...,),()((
)()()|(
11 nn yLyPyLyPc

YLYPcveYP
⋅=

⋅⋅=

(3.5)

where ∑= i ii yLyPc)()(/1 is the normalization factor [36]. And since Y d-separates

virtual evidence from all other variables, beliefs on X \ Y are updated using Bayes’ rule:

)|()|\()|\(veyPyYXPveYXP iy ii
∑= (3.6)

and similar to equation (3.2), this d-separation leads to

36

)()(
)(

)()(
)(

)(
)|(

)()|(

YLXPc
YP

YLYPc
XP

YP
veYP

XPveXP

⋅⋅=

⋅⋅
=

=

(3.7) Now we extend Example 3.1 to show how to use virtual evidence.

Example 3.2. Suppose we are not certain about our original belief about the cloth color.

This information of uncertainty can be coded as virtual evidential findings: we are 50%

confident that the cloth is blue when the cloth looks blue, 80% confident that the cloth is

green when the cloth looks green, 100% confident that the cloth is violet when the cloth

looks violet. Therefore our beliefs on the cloth color is updated using equation (3.5) as c⋅

(0.3, 0.3, 0.4)⋅(0.5, 0.8, 1.0) = (0.19, 0.30, 0.51). Also by equation (3.7) we have the joint

posterior distribution

 08.0)|,(=vesoldblueP , 11.0)|,(=vesoldblueP ,

 12.0)|,(=vesoldgreenP , 18.0)|,(=vesoldgreenP ,

41.0)|,(=vesoldvioletP , 10.0)|,(=vesoldvioletP .

Our belief on “color” is updated by this virtual evidence from the (0.3, 0.3, 0.4) to (0.19,

0.30, 0.51). ¦

Some BN inference engines support belief update with virtual evidence by directly

taking the likelihood ratio as input. Otherwise, virtual evidence can be incorporated into

any BN inference engine using a dummy node. This is done by adding a binary node veY

for the given L(Y). This node, called virtual evidence dummy node by some, does not

37

have any child, and has all variables in Y as its parents. The conditional probability table

(CPT) of veY should conform with the likelihood ratio, i.e., for all i, j,

)(/)()|(/)|(jijYiY yLyLyvePyveP = .

Then, by instantiating veY to True, the virtual evidence L(Y) is entered into the BN and

the belief can then be updated by any BN inference algorithm. In other words, a virtual

evidence is equivalent to a hard evidence in an extended BN with the addition of a virtual

evidence node.

3.3 IPFP on Bayesian Network

We can see that equations (3.4), (3.7) and (2.5) are in the same form. Therefore we can

regard belief update with soft evidence by Jeffrey’s rule as an IPFP process of a single

constraint P(Y | se), and similarly regard belief update with virtual evidence by likelihood

ratio as an IPFP process of a single constraint P(Y | ve). As such, we say that belief update

by uncertain evidence amounts to change the given distribution so that 1) it is consistent

with the evidence; and 2) it has the smallest I1-divergence to the original distribution.

Moreover, IPFP provides a principal approach to belief update with multiple

uncertain evidential findings. By treating these findings as constraints, the iterative

process of IPFP leads to a distribution that is consistent with ALL uncertain evidences

and is as close as possible to the original distribution.

Unlike the virtual evidence method, both Jeffrey’s rule and IPFP cannot be directly

applied to BNs because their operations are defined on the full joint probability

distribution, and they do not respect the structure of BN [37]. For small BN, one can

38

explicitly generate the full joint distribution and then apply IPFP for belief update on the

distribution. This is, however, infeasible for large BN, because, among other things, the

distribution would be prohibitively large. Our proposed solutions to this problem are

presented in the next section.

3.4 Inference with Multiple Soft Evidential Findings

Valtorta, Kim and Vomlel have devised a variation of Junction-Tree (JT) algorithm for

belief update with multiple soft evidences using IPFP [40]. In this algorithm, when

constructing the JT, all soft evidence nodes (i.e., those variables that are involved in any

of the soft evidential findings) are fully connected with each other by additional edges.

After triangulation, all soft evidence nodes appear in a clique (the Big Clique). Let C

denote this big clique, Y = {Y1, ..., Yk} and {se1, ..., sek} denotes soft evidence variables

and their respective soft evidences, and X denotes the set of all variables. This Big Clique

algorithm first applies all hard evidences and updates P(X) to P*(X) using traditional JT

algorithm. Then, it absorbs soft evidences in C by updating the potential of C with the

following IPFP formulae, iterating over Q(Yj):

)(

)|(
)()(

)()(

1
1

*
0

ji

jj
ii YQ

seYP
CQCQ

CPCQ

−
−=

=

where j = 1+(i-1) mod k. The above procedure is iterated until Qn(Yj) converges to P(Yj |

sej) for all j. Finally, Q(C) is distributed to all other cliques, again using traditional JT

algorithm.

39

This Big Clique algorithm is time efficient because it does not iterate on the joint

distribution of all variables of the network but on the distribution of variables in a clique

(which include all soft evidence nodes). It becomes inefficient in both time and space

when the size of the big clique itself becomes large.

Besides the potential high cost of time and space, this Big Clique algorithm has

another limitation. It works only with Junction-Tree, and thus cannot be adopted by those

using other inference mechanisms2. Also, it requires incorporating IPFP operations into

the JT procedure, causing re-coding of the existing inference algorithm. To address these

issues, we propose two new algorithms for inference with multiple soft evidential

findings. Both algorithms utilize IPFP, although in quite different ways. The first

algorithm combines the idea of IPFP and the encoding of soft evidence by virtual

evidence. The second algorithm is similar to the Big Clique algorithm but it decouples

the IPFP with Junction-Tree. These two algorithms are presented in the next two

subsections.

3.4.1 Iteration on the Network

As discussed in Section 3.2, inference with virtual evidence can be easily implemented

using any BN inference methods with the help of a dummy node. With this dummy node,

inference with virtual evidence (the likelihood ratio) is transformed to inference with hard

evidence (instantiating the dummy node to true). This approach thus also works when

multiple virtual evidential findings are present if we add dummy node for each finding.

2 Valtorta and his colleagues also developed another algorithm for soft evidence inference, also based on JT inference engine [12].
This method does not require to form the big clique. Instead, it iteratively 1) updates the potential of the clique which contains
variables of one soft evidence by (2.5) and 2) propagates the updated potential to the rest of the network. They mentioned the
possibility of implementing this method as a wrapper around Hugin shell or other JT engines, but no suggestion of how this can be
done was given [12].

40

As pointed out by Pearl [36], and Chan and Darwiche [5], soft evidence can be easily

translated into virtual evidence when it is on a single variable. Given a soft evidence se

on variable A, we want to find a likelihood ratio L(A) such that

)|()()(seAPALAP =⋅ .

So

).

)(
)|(

,...,
)(

)|(
,

)(
)|(

(

)(
)|(

)(

2

2

1

1

n

n

aP
seaP

aP
seaP

aP
seaP

AP
seAP

AL

=

=

 (3.8)

A soft evidence can also be defined on multiple variables, as illustrated by the following

example.

Example 3.3. As depicted in Figure 2, we extend Example 3.1 by adding another variable

Cloth Pattern, which also influences the salability of cloth in the next day.

Figure 3.2 Example 3.3

The new observation can be made over both colors and patterns of the cloth, as a joint

distribution below

12.0),(=StripedblueQ , 18.0),(=SolidblueQ ,

15.0),(=StripedgreenQ , 15.0),(=SolidgreenQ ,

30.0),(=StripedvioletQ , 10.0),(=SolidvioletQ . ¦

41

To represent soft evidence on multiple variables, e.g., the one in Example 3.3 above,

using virtual evidence, the likelihood ratio needs to be calculated from the joint

distribution of soft evidence variables. Suppose we are given a soft evidence se on a set

of variables Y ⊆ X, we can construct a virtual evidence ve, which, if applied, would have

the same influence as se on variables in X \ Y. The likelihood ratio associated with this ve

can be computed from the given evidential finding)()|(YQseYP = and the original joint

distribution)(YP in the way analogous to equation (3.8),

)
)(

)|(
,...,

)(
)|(

()(
1

1

m

m

yP
seyP

yP
seyP

YL = (3.9)

where, again, yi is a state configuration of all variables in Y, and m is the total number of

distinct configurations. Then a dummy node can be created for this ve as described at the

end of Section 3.2.

A problem arises when multiple soft evidences se1, se2, … , sem are presented and

converted to ve dummy nodes. Instantiating a single dummy node vei to True will have

the same effect as applying the soft evidence sei, in particular, the posterior probability of

Yi is made equal to P(Yi | sei). This is no longer the case when all of these dummy ve

nodes are set to True. Now, the belief on Yi is not only influenced by vei, but also by all

other dummy nodes which are working as hard evidences. As the result, the posterior

probabilities of Yi’s are NOT equal to P(Yi | sei). In other words, the soft evidences are

not preserved or protected in the update process. It would be nice if we can hold the

42

probability of Yi fixed after the corresponding vei is applied. Unfortunately, there is no

such mechanism in BN.3

What is needed is a method that can convert a set of soft evidences to one or more

likelihood ratios which, when applied to the BN, preserve every soft evidence P(Yi | sei).

Algorithm 1 presented below accomplishes this purpose by combining the idea of

IPFP and the virtual evidence method. Roughly speaking, this algorithm goes as follows.

Like the IPFP, it is an iterative process and one soft evidence sei is considered at each

iteration. If the current probability of Yi equals P(Yi | sei), then it does nothing, otherwise,

a new virtual evidence is created based on the current probability of Yi and the evidence

P(Yi | sei). We will show that this process converges, and when it converges, the

probability of Yi is equal to P(Yi | sei). To better describe the algorithm, we adopt the

following notations:

� P (without subscript): the prior probability distribution.

� Pk (with subscript): the probability distribution at kth iteration.

� vei,j: the jth virtual evidence created for the ith soft evidence.

Algorithm 3.1. Consider a BN N with prior distribution P(X), and a set of m soft

evidential findings SE = (se1, se2, … , sem) with P(Y1 | se1),… , P(Ym | sem). We use the

following iteration method for belief update:

3 This would not be a problem for hard evidence because hard evidence is protected with special treatment
of probabilities of zero. For example, in Junction-Tree algorithm, the potential algebra defines that zeroes
in probability tables remain zeros after each operation [15]. This would not be a problem for virtual
evidence, either, because virtual evidence (the likelihood ratio) is protected in the CPT of the dummy node,
which is never changed during inference.

43

function Soft_Evidential_Update(N)

1 P0(X) = P(X); k = 1;

2 Repeat the following until convergence:

3 mki mod)1(1 −+= ;  mkj /)1(1 −+= ;

4 Construct virtual evidence vei,j with likelihood ratio

)
)(

)|(
,...,

)(

)|(
()(

,1

,

1,1

1,

sik

si

ik

i
i yP

seyP

yP

seyP
YL

−−

= ,

where sii yy ,1, ,..., are state configurations of Yi;

5 Obtain Pk(X) by updating Pk-1(X) with vei,j using standard BN

inference;

6 k = k + 1; ¦

The algorithm cycles through all soft evidences in SE. At the kth iteration, the ith soft

evidence sei is selected (step 3) to update the current distribution Pk-1(X). This is done by

constructing a virtual evidence vei,j according to equation (3.9). The second subscript here,

j, is the number of virtual evidences created for sei, this index is incremented in every m

iterations. When converged, we can form a single virtual evidence node vei for each soft

evidence sei with the likelihood ratio that is the product of likelihood ratios of all vei,j,

jiji veve ,∏= .

The convergence and correctness of Algorithm 1 is established in Theorem 3.1 below.

44

Theorem 3.1. If the set of soft evidence SE = (se1, se2, … , sem) is consistent, then

Algorithm 1 converges with joint distribution P* (X), in which P* (Yi) = P(Yi | sei) for all

sei in SE.

Proof.

By equations (3.8) and (3.9), the likelihood ratio computed at Step 4 satisfies

)|()()(1 iiiik seYPYLYP =⋅− .

To see what is achieved at Step 5, re-write equation (3.7),

)(
)|(

)(

)()()|(

1
1

1

ik

i
k

ikk

YP
veYP

XP

YLXPcveXP

−
−

−

=

⋅⋅=
.

This is the same as equation (2.5). Therefore, Algorithm 3.1 performs IPFP on P0(X)

with soft evidences P(Y1 | se1), … , P(Ym | sem) as constraints. Then following Theorem

2.1, Algorithm 3.1 converges and all constraints (i.e., soft evidences) are satisfied when it

converges. ¦

3.4.2 Iteration on Local Distribution

Algorithm 3.1 may become expensive when the given BN is large because it updates the

beliefs of the entire BN in each iteration (step 5). Following is another algorithm that

iterates virtual evidence on joint distribution of only evidence variables:

Algorithm 3.2. Consider a Bayesian network N and a set of m soft evidential findings SE

= (se1, se2, … , sem) to N with P(Y1 | se1),… , P(Ym | sem). Let Y =Y1 ∪ … ∪ Ym. We use the

following iteration method for belief update in N:

45

function Soft_Evidential_Update(N)

1 Use any BN inference method on N to obtain P(Y);

2 Apply IPFP on P(Y), using P(Y1 |se1), P(Y2 | se2), … , P(Ym | sem) as the

probability constraints and obtain P(Y | se1, se2, … , sem);

3 Add a virtual evidence dummy node to N to represent P(Y | se1, se2, … , sem)

with likelihood ratio L(Y) calculated according to equation (3.9);

4 Apply L(Y) as a single virtual evidence to update beliefs in N. ¦

Algorithm 3.2 also converges to the I1-projection of P(X) on the set of soft evidences

SE, even though the iterations are carried out only on a subset of X.

Theorem 3.2. Let R1(Y1), R2(Y2), …, Rm(Ym) be probability constraints on distribution

P(X). Let ∪i iYY = and Y ⊆ Z ⊆ X. Suppose from IPFP we get the I1-projection of P(Y) on

{R1, R2, …, Rm} as Q(Y) and the I1-projection of P(Z) on {R1, R2, …, Rm} as Q’(Z). Let

Q(X) and Q’(X) be obtained by applying the Jeffrey’s rule on P(X) using Q(Y) and Q’(Z).

Then Q(X) = Q’(X).

Proof. From the definition of I-divergence we have

))(||)('(ZPZQI

 ∑= z zP
zQ

zQ
)(
)('

log)('

46

∑= z yPyyzP
yQyyzQ

yQyyzQ
)()|\(
)(')|\('

log)(')|\('

∑= z yPyyzP
yQyyzP

yQyyzQ
)()|\(
)(')|\(

log)(')|\('

∑= z yP
yQ

yQyyzQ
)(
)('

log)(')|\('

∑ ∑= y yz yP
yQ

yQyyzQ
)(
)('

log)('))|\('(\

∑= y yP
yQ

yQ
)(
)('

log)('

))(||)('(YPYQI= (3.10)

Note that line 4 comes from the fact that =)|\(' yyzQ)|\(yyzP , the invariance of

conditional probability, as discussed in Section 3.1. Also, note that line 7 comes from the

fact that 1)|\('\ =∑ yz yyzQ .

Note the IPFP that generates I1-projection of P(Z) on {R1, R2, …, Rm} minimizes

I(Q’(Z)||P(Z)), then by equation (3.10) it also minimizes I(Q’(Y)||P(Y)). Also because the

IPFP that generates the I1-projection of P(Y) on {R1, R2, …, Rm} minimizes I(Q(Y)||P(Y)),

by the uniqueness of I1-projection we have Q’(Y) = Q(Y). Then from Jeffrey’s rule we

know Q(X) = Q’(X). ¦

Example 3.4. As depicted in Figure 3.3, we are given a Bayesian network with variables

A, B, C, and D and two soft evidences P(B) = (0.7, 0.3) and P(C) = (0.3, 0.7). Figure

3.4(a) shows the running result of Algorithm 3.1, with resulting likelihood ratios L(B) =

(1.0, 0.354) and L(C) = (0.578, 1.0) at convergence. Figure 3.4(b) shows the running

47

result of Algorithm 3.2, where L(B, C) = (0.578, 1.0, 0.205, 0.354) at convergence. Both

algorithms converge in 4 iterations to the same distribution.

A
1 0

0.4 0.6

B A
1 0

1 0.20 0.80
0 0.60 0.40

C A
1 0

1 0.60 0.40
0 0.35 0.65

D B C
1 0

1 1 0.10 0.90
1 0 0.85 0.15
0 1 0.45 0.55
0 0 0.70 0.30

Figure 3.3 The BN of Example 3.4

(a) The running result of Alg 3.1 (b) The running result of Alg 3.2

Figure 3.4 Running result of Example 3.4

3.4.3 Time and Space Performance

The iterations of Algorithm 3.1, Algorithm 3.2 and the Big Clique algorithm all lead to

the same distribution. However, at each iteration, the Big Clique algorithm updates

48

beliefs of the joint probabilities of the big clique C, Algorithm 3.2 updates the belief of

evidence variables Y, and Algorithm 3.1 updates the belief of the whole BN, or, of all

variables in X. Clearly, Y ⊆ C ⊆ X. However, the time complexity for one iteration of Big

Clique is exponential to d(C) (the state number of C), and Algorithm 3.2 exponential to

d(Y), because both require modifying a joint distribution (or potential) table. On the other

hand, the time complexity of Algorithm 3.1 equals to the complexity of the BN inference

algorithm it uses for belief update, e.g., if we use JT, the time complexity for one

iteration of Algorithm 3.1 is exponential to the size of the largest clique in JT, which may

be smaller than C and Y, especially for small and sparse BNs.

Both the Big Clique and Algorithm 3.2 are space inefficient. The Big Clique needs

additional space for the joint potential of C, whose size is exponential to d(C). Algorithm

3.2 also needs additional space for the joint distribution of Y, and the dummy node of

virtual evidence in Step 4 leads to a CPT with size exponential to d(Y). In contrast,

Algorithm 3.1 only needs additional space for virtual evidence, which is linear to d(Y).

Algorithm 3.2 is thus more suitable for problems with a large BN but a few soft

evidential findings and Algorithm 3.1 is more suitable for small to moderate-sized BNs.

Also, both Algorithm 3.1 and 3.2 have the advantage that users do not have to stick to

and modify the Junction-Tree when conducting inference with soft evidence. They can be

easily implemented as wrappers on any BN inference engine.

3.5 Experiments and Evaluation

To empirically evaluate our algorithms and to get a sense of how expensive these

approaches may be, we have conducted two experiments with artificially made networks

49

of different sizes. Our two algorithms are implemented in Java using Netica4 Java API

and its JT based inference engine. The reported memory consumption does not include

those that were used by the Junction-Tree, but the reported running time is the total

running time.

The first experiment used a BN of 15 binary variables. Three sets of 2, 4, 8 soft

evidential findings were selected for the experiments. One half of these evidential

findings involved 2 variables, and the other half involved 1 variable. In the

implementation of Algorithm 3.2 we used I-divergence to measure the distance of the

probability distributions of two iterations. In the implementation of Algorithm 1, because

it is very time consuming to calculate the I-divergence between two probability

distributions of a large number of variables, we compute the cross-entropy of every

variable and sum them up. Because of this difference, the Algorithm 3.1 runs more

iterations than Algorithm 3.2 to ensure the result is sufficiently accurate. The experiment

results are given in Table 3.1.

From Table 3.1 we can see that both the time and memory consumptions of

Algorithm 3.1 increase slightly when the number of evidences increases. However, those

for Algorithm 3.2 increase rapidly, consistent with our analysis.

Table 3.1 Experiment 1

of
findings

Iterations
(Alg 3.1|Alg 3.2)

Exec. Time
(Alg 3.1|Alg 3.2)

Memory
(Alg 3.1|Alg 3.2)

2 24 14 0.57s 0.62s 590,736 468,532
4 79 23 0.63s 0.83s 726,896 696,960
8 95 17 0.71s 15.34s 926,896 2544,536

4 Netica: Bayesian network tool from Norsys Software Corp. http://www.norsys.com/

50

The second experiment used BNs of 30, 60, 120, and 240 binary variables. In all

cases we entered the same 4 soft evidential findings involving a total of 6 variables. All 4

experiments converge after the same number of iterations (43 for Algorithm 1 and 14 for

Algorithm 2). From Table 3.2 we can see that when the number of soft evidences is fixed,

the running time of Algorithm 3.2 increases slightly with the increase of the network size.

Especially, the time for IPFP (the time in parentheses) keeps stable when the variable

number increases, which means that most increased time was spent on constructing the

joint probability distribution from the BN (Step 1 of Algorithm 3.2). These experiment

results confirm our theoretical analysis for the proposed algorithms.

Table 3.2 Experiment 2.

Size
of N

Iterations
(Alg 1|Alg 2)

Exec. Time
(Alg 3.1|Alg 3.2 (IPFP))

Memory
(Alg 3.1|Alg 3.2)

30 0.58s 0.67s (0.64s) 721,848 691,042
60 0.71s 0.69s (0.66s) 723,944 691,424
120 1.71s 0.72s (0.66s) 726,904 691,416
240

43 14

103.1s 3.13s(0.72s) 726,800 696,842

3.6 Summary

In this chapter, we analyzed three existing belief update methods for Bayesian networks:

virtual evidence, Jeffrey’s rule and IPFP. We established that belief update with one

virtual evidence or soft evidence is equivalent to an IPFP with a single constraint.

Besides, IPFP can be easily applied to BN with the help of virtual evidence. Our

proposed algorithms update probability beliefs for multiple soft evidences by integrating

methods of virtual evidence, IPFP and traditional BN inference with hard evidence.

Compared with previous soft evidential update methods such as the Big Clique, our

51

algorithms have practical advantage of being independent of any particular BN inference

engine.

52

4 Variable Linkage

In this Chapter, we consider the problem of how to model variables in SLBN that share

similar semantics. First we present our thoughts about what type of semantic similarity is

considered as shareable between variables. Base on this understanding, we propose the

variable linkage to represent semantic similarity and give detailed examples of different

use cases of variable linkages. At the end of this chapter we present an assumption we

make on the variable linkages of SLBN.

4.1 Semantic Similarity

In our proposed SLBN, Bayesian networks are trying to communicate and exchange

beliefs via similar concepts, where a single concept is represented by one of more

variables. Certainly, a method that quantifies similarities is needed for the framework.

However, “similarity” is not a well-defined property for concepts, and neither is its

quantification. It is difficult to represent what we mean when we say “concepts A and B

are similar”, even in an intuitive way. Our natural language has a very vague definition

for the word “similar”. Here is how dictionaries explain the word “similar”:

1. having characteristics in common

2. alike in substance or essentials

3. not differing in shape but only in size or position

––––www.merrian-webster.com

53

1. marked by correspondence or resemblance

2. having the same characteristics

3. (of words) expressing closely related meanings

4. capable of replacing or changing places with something else; permitting

mutual substitution without loss of function or suitability

 ––––WordNet

These straight forward and intuitive definitions are not accurate and sufficient for

describing similarities between complex concepts or concepts with specific properties in

intelligence systems. For example, the concepts High-tech Company Employee and High-

income People are considered as similar because most high-tech company employees are

high-income people as well as a large portion of high-income people work for high-tech

companies. And the more high-tech company employees are classified as high-income

people, the more the concept High-tech Company Employee is similar to the concept

High-income People. However, it is hard to articulate these two concepts have

“characteristics in common” or are “alike in substance or essentials”. Another example is

to think about two concepts Computer Keyboard and Typewriter, which by definition

from the dictionaries can be said as similar because they have some common

characteristics, such as both of them contains keys of characters and numbers with the

same layout. But no instances can be both a computer keyboard and a typewriter. So

although such similarity can be expressed, it cannot be quantified and used to relate the

status of the two concepts. So our interpretation to similarity is that two concepts are

semantically similar as their common instances have a certain portion of share.

54

Moreover, “similar” is not a symmetric relation between concepts in our concern.

Rather than stating concepts A and B are similar, we state A is similar to B and/or B is

similar to A. We emphasize the direction because the domain knowledge may only

capture and quantify the similarities of one direction. Let’s think about the concepts

High-tech Company Employee and High-income People again: how likely a high-tech

company employee receives high income and how likely a high-income person works in

a high-tech company are two different estimations. Since domain knowledge may only

know the information of one direction, similarities are quantified and utilized with

direction.

The last issue is how to quantify the semantic similarities. Two concepts are identical

if their instances are all shared by each other. Two concepts are dissimilar if they share

no common instances. Also, as concept A has more instanced shared with the other

concept B, A is more similar to B, e.g., A and C each has 100 instances, A share with B 80

instances, and C share with B 50 instances; then we say A is more similar to B than C is.

So the similarity can be represented by the ratio of the shared instances to all the

instances.

Following the above statements, we find that conditional probability is a natural

representation of semantic similarities. For example, P(High-tech Company Employee |

High-income People) can be interpreted as a measurement of how likely a high-income

person works in a high-tech company.

55

4.2 Variable Linkage

Given two separately developed BNs NA and NB, the precondition for conducting

reasoning across them is that there exists an overlap in the domains they model. This

overlap in domain could be represented in different forms. For example, in MSBN the

overlap knowledge is represented as a Junction-Tree of shared variables, in AEBN this

overlap is represented as shared variables, and such overlap knowledge could also be in

the form of a distribution, a function, or a set of logic rules. In our framework, we require

this overlap of knowledge overlap to be encoded as conditional probability between

variables in Bayesian networks.

4.2.1 Pair-Wise Variable Linkage

Definition 4.1 (Pair-wise Variable Linkage): A pair-wise variable linkage represents the

semantic similarity between two variables in separate BNs. A pair-wise variable linkage

A
BL from variable A in Bayesian network NA to variable B in Bayesian network NB is

defined as

< A, B, NA, NB, A
BS >,

where A
BS is the quantification of the semantic similarity that A

BL represents. A
BS is a in the

form of an m×n matrix:

A
BS (i, j) = {P(bj| ai)},

where i = 1, … , m, j = 1, … , n, m and n are the number of the states of of A and B,

respectively. ¦

56

We call variables A as L’s source variable or source, and B as L’s destination

variable or destination. The source variables of linkage L is denoted by src(L), and the

destination variables of linkage L is denoted by dest(L). Also NA is called the source BN

of L and BNB the destination BN. In the rest of this dissertation, A
BS is always referred as

a matrix. If we want to involve A
BS in the calculations defined in the probability

distribution algebra, A
BS is presented in the form of conditional probabilities.

Although semantic similarity is quantified by conditional probabilities in variable

linkage, it is between concepts that are inherently semantically similar, not those that

have general probabilistic dependencies. The essential difference is that probabilistic

dependency may not remain unchanged when some events occur in NA and NB.

Interdependencies encoded by the DAG of Bayesian networks are such relations that

depend on the status of variables. In contrast, semantic similarity persists regardless of

occurrences of other events.

Example 4.1 (Probabilistic Dependency vs. Semantic Similarity): In two medical

diagnosis BN NA and NB, we have variables Diabetes in NA and Hyperglycemia in NB,

both of which has states True and False. Their relation can be captured by a conditional

probability









=

8.02.0
01

)|(DiabetesmiaHyperglyceP

as diabetes is characterized by variable hyperglycemia. This conditional probability

embodies a conditional dependency in that hyperglycemia is the effect of diabetes, and

can be influenced by the states other variables take, for example, Obesity. And now if in

57

NA there is another variable Blood Sugar Level, which has three state High, Medium, and

Low. Then its relation between variable Hyperglycemia can be captured by the following

conditional probability:
















=

10
10
01

)|(LevelSugarBloodmiaHyperglyceP .

This conditional probability represents the semantic similarity between two variables and

it will not change upon the occurrences of any events. ¦

Besides the above distinction, the probabilistic influences on variable linkages also

differ from the probabilistic influences on BN edges in that they can only be propagated

along the direction of the linkages as the semantic similarity is directed. Since variable

linkages do not represent conditional dependencies, Bayes rule cannot be applied directly

for inference. Although a linkage is quantified by)|(ABP , the reverse similarity

)|(ABP is not known to the linkage, and it can not be obtained by Bayes rule. Suppose

we are given a linkage A
BL = < A, B, NA, NB, A

BS >, where)|(ABP is used to quantify

how B is similar to A. If we calculate the conditional probability of the reverse side by

Bayes rule, then we should have

)(
)(

)|()|(
BP
AP

ABPBAP = ,

where)|(ABP is invariant with respect to any events. We can see that this)|(BAP

may be dependent to the prior belief on A and B. Therefore, variable linkages do not

support the probabilistic influence of the reverse direction. Variable linkages are bridges

58

by which probabilistic influence can be propagated and cannot be simply reversed

without additional domain knowledge. In SLBN, the belief change of source variables

influences the belief on destination variables and the belief change of destination

variables indicates the belief on source variables has been changed.

Moreover, it is enough that the conditional probabilities of a semantic similarity

retains only under the events within the current domain. That is to say, there could exist

some event outside the domain of the linked BNs that invalids the variable linkage, but as

long as such event is not discussed, the variable linkage could be established. For

example, the equivalence of variables Male Parent and Father are absolutely identical.

Even in the real world, the conditional probabilities describing their equivalence cannot

be changed by any event. However, this is not the case in many situations. In the

following example, we will show that a variable linkage is invalided by an external event,

but is valid for describing a specific problem:

Example 4.2: Suppose we are given two similar variables Precipitation in NA and

Raining in NB, both of which has states True and False. And upon our observation, a

variable linkage is established from Precipitation to Raining, and the linkage is

quantified as follows:









=

10
12.088.0

)|(ionPrecipitatRainingP .

Suppose NA describes a meteorology model and NB models how weather interacts

with human’s activity, and then this variable linkage could help to discover more

relations between human’s activities and meteorology phenomenons. Now that somebody

proposes a variable Season, which gives new visions about the above problem but is not

59

modeled by either NA or NB. If variable season is considered, the above variable linkage is

invalided because the relation of Precipitation and Raining is different in different

seasons. Specifically,

)|(),|(ionPrecipitatRainingPSeasonionPrecipitatRainingP ≠ .

However, as long as the variable Season is not included in the domain, the conditional

probability for the variable linkage from Precipitation to Raining is still invariant w.r.t.

the events in the linked BNs. ¦

4.2.2 Variable Linkage

Semantic similarity is not restricted to only one to one mappings, it can also be between

multiple variables. For example, suppose concept A is similar to the union of B and C,

then two pair-wise linkages from A to B and A to C would not be enough to describe such

a similarity. So next we will give a general definition for variable linkage, which is

between two sets of variables. However, we have to add restrictions to the set of linked

variables so that inference can be conducted properly across the linkages. We believe that

these restrictions are reasonable and can be easily met by many Bayesian networks.

Definition 4.2 (variable linkage): A variable linkage represents the semantic similarity

between two sets of variables in separate Bayesian networks. A variable linkage X
YL from

a set of variables X in Bayesian network NX to a set of variable Y in Bayesian network NY

is defined as

< X, Y, NX, NY, X
YS >,

60

where X
YS is the quantification of the semantic similarity that X

YL represents. ∀ Xi, Xj∈X

and Yi, Yj ∈Y, one of the following conditions must be satisfied:

1. There is no directed path from Xi to Xj and from Yi to Yj;

2. If there is a directed path from Xi to Xj or from Yi to Yj, then any variable in

path(Xi, Xj) or path(Yi, Yj) is also in X or Y.

X
YS is a conditional probability distribution in the form of an m×n matrix:

)}|({),(ijS
X

Y xyPjiS = ,

where i = 1, … , m, j = 1, … , n, m and n are the number of the state configurations of X

and Y, respectively. ¦

Considering the semantics of Bayesian networks, variable linkage’s restrictions about

the linked variables are quite reasonable. If a variable linkage does not obey these

constraints, then there must exist a variable A in the networks such that one of its

ancestors and one of its descendants are included in a linkage. Let B denotes the ancestor

and C denote the descendant, then we have path(B, A, C). The linkage that involves B and

C indicates that both B and C are similar to a concept in another BN, but variable A,

which is an effect of B and a cause of C, is not similar to that concept. This is not quite

reasonable.

61

(a) pair-wise variable linkage

(b) variable linkage satisfying condition 1

(c) Invalid variable linkage according to condition 2

62

(d) variable linkage satisfying condition 2

Figure 4.1 Variable linkages

Figure 4.1 illustrate our definition of variable linkages. Figure 4.1(a) depicts two pair-

wise variable linkages B
BL ' and C

CL ' . Figure 4.1(b) depicts a variable linkage BC
CBL '' , which

meets the Condition 1 of the variable linkage’s definition. Figure 4.1(c) is not a valid

variable linkage because according to Condition 2 of the variable linkage’s definition,

variable C should also be included in the linkage. And Figure 4.1(d) shows the correction.

4.2.3 Expressiveness of Variable Linkage

Based on our definition, the relations that can be represented by the variable linkages can

be divided into the following categories:

1. Logical relationships defined in OWL syntax, including equivalent, union,

intersection, and subclass complement. These relations can be represented by

variable linkages in both directions. The conditional probabilities can be

determined as what were done in BayesOWL [11][12] while most entries can be

determined logically and a few need domain knowledge.

63

2. Relaxation of logical relationships by replacing set inclusion by overlapping. For

example, two concepts A and B are similar is a relaxation of equivalence, where

A and B include each other is replaced by A and B overlap with each other.

3. Equivalence relations but same concepts are modeled as different variables (e.g.,

Hyperglycemia and Blood Sugar Level, they not only have different names but

also have different number of states). This type can be easily treated as

extensions to either 1 or 2 above.

In the above statements, you may find that the semantics of the variable linkage is

different from what the semantic similarity expected in Section 4.1. For example, a

variable linkage can represent the relationship of complementation, such as Man and

Woman, but these concepts do not share instances and cannot be considered as

semantically similar. This is because SLBN represents semantic similarities in

propositional logic level. In BN, a concept is represented by variables with states, each of

which can be interpreted as a proposition. For example, the variable Man has two states

True and False, which stand for two propositions Man = True and Man = False. Each of

these propositions is supported by a set of instances. Therefore, in SLBN, a variable

linkage represents semantic similarities between propositions, rather than between

variables. When we say concept High-tech Company Employee is similar to the concept

High-income People, we mean the proposition High-tech Company Employee = True is

similar to the proposition High-income People = True. So in SLBN, a variable linkage

between variables Man and Woman actually represents semantically similar propositions

Man = True and Woman = False.

Illustrative examples of the above categories are given below.

64

Example 4.3 (Category 1):

Figure 4.2 Variable linkages for identical variables

Figure 4.2 depicts an example of variable linkages for equivalent variables. Here

variables Male, Female are sub-concepts of Human. They and Man and Woman all have

two states true and false. And the linkages are quantified as









==

10
01Female

Woman
Male
Man SS .

Example 4.4 (Category 1):

Figure 4.3 Variable linkages maps one variable with the union of two variables

Figure 4.3 depicts an example of two variable linkages of opposite direction. Here the

Human is a concept identical to the union of Man and Woman. The linkage Human
WomanManL , is

quantified as

65









=

1000
049.051.00

,
Human

WomanManS ,

and the linkage WomanMan
HumanL , is quantified as

















 −−

=

10
01
01,WomanMan

HumanS .

Example 4.5 (Category 2):

Figure 4.4 Variable linkages from a concept to its sub-concept

Figure 4.4 depicts a variable linkage from a super concept Precipitation to a sub

concept Rain, both of which has two states True and False. The linkage is quantified as









=

10
15.085.0ionPrecipitat

RainS .

A linkage defined from a sub-concept A to a super-concept B should be carefully

treated. Regularly,)|(ABP cannot be well assessed as A is unknown or will be changed

by the occurrence of events. To safely define a linkage from a sub-concept to a super-

concept, (B - A) should be defined using some other variables and the linkage should be

66

created from the union of A and (B - A) to B. The next example shows how to define a

linkage in such situation.

Example 4.6 (Category 2):

Figure 4.5 A variable linkage with context specific similarity

Figure 4.5 depicts a variable linkage for Example 4.1. Suppose both linked BNs are

constructed using statistics data of the same area. High-tech Company Employee and

High-Income People are two concepts overlap in domain knowledge, and both concepts

are represented by variables with states True and False. The linkage HIP
HTCEL is quantified

as









=

99.001.0
3.07.0HIP

HTCES .

Example 4.7 (Category 3):

Figure 4.6 A variable linkage for identical variables with different descriptions

67

Figure 4.6 depicts an example of a variable linkage for identical concepts represented

by different variables. The source variable Battery voltage has two states Strong and

Weak, where the destination variable Battery voltage has three states Strong, Weak and

Dead. Then the linkage is quantified as









=

1.09.00
001_

_
voltageBattery
voltageBatteryS .

4.3 Consistency between Variable Linkages and Linked Bayesian

Networks

When a variable linkage is created to represent semantic similarities between variables,

then what is the relation between the similarity and the beliefs of the linked BNs?

Suppose we are given A
BL = < A, B, NA, NB, A

BS >, then the prior distribution of the linked

variables should conform the similarity, e.g., if A is identical to B, then P(A) in NA equals

P(B) in NB. To formally state this, we introduce the concept of consistency of linked BNs

and their variable linkages.

Definition 4.3 (Consistency of Variable Linkage): A variable linkage X
YL = <X, Y, NX, NY,

X
YS > and its linked BNs NX and NY are consistent if and only if the probability

distribution of the linked variables can be represented by a single joint probability

distribution. Specifically, the prior distributions of linked variables must satisfy the

linkage’s similarity:

)()(XPSYP X
X

YY = in the matrix notation, or ∑= j jXjiSiY xPxyPyP)()|()(.

68

And there exists a joint probability distribution Q(X, Y, π(X), π(Y)) such that the

following constraints are satisfied:

1.)()()|(),(XPSXPXYPYXQ X
X

YXS ⋅== ;

2.))(,())(,(XXPXXQ X ππ = and))(,())(,(YYPYYQ Y ππ = ;

3.))(),(())(),((YXfYXQ ππππ = ;

where π(X) represents X ’s parents and π(Y) represents the Y’s parents who are not

involved in any other linkages. A simple yet reasonable f would be that π(X) and π(Y) are

independent of each other, i.e., f (π(X), π(Y)) = P(π(X))P(π(Y)). A set of linked BNs are

said to be consistent if all linkages and their linked BNs are consistent. ¦

If a variable linkage and its linked BNs are consistent, then we can construct one of

such joint distribution Q by IPFP on an initially uniform distribution. First we initiate a

probability distribution as









=
))(())(()()(

1
))(),(,,(0 YdXdydXd

YXYXQ
ππ

ππ .

Then we run IPFP on Q0(X, Y, π(X), π(Y)) with the constraints: Q(X, Y), Q(X, π(X)), Q(Y,

π(Y)), and Q(π(X), π(Y)) as given in Definition 4.3. Conversely, if the IPFP does not

converge, then we can conclude that the given variable linkage and its linked BN are not

consistent.

Figure 4.7 depicts an example of consistent linked BNs. Figure 4.7(a) shows two

linked BNs with a linkage between two disjoint variables. The prior distributions of B

and D are respectively (0.76, 0.24) and (0.24, 0.76), which already represent they are

69

disjoint concepts. Figure 4.7(b) shows the joint probability distribution Q(A, C, B, D),

which satisfies the following constraints:

Q(A, C) = P(A)P(C),

Q(B, A) = P(B, A),

Q(D, C) = P(D, C), and

Q(B, D) = Ps(B| D)P(D).

To obtain this distribution, the IPFP iterates 37 loops to converge with a convergence

threshold 10-6 (the cross-entropy I(Qn||Qn-1) < 10-6).

 B E
True False

True 0.35 0.65
False 0.8 0.2

B A
True False

True 0.9 0.1
False 0.2 0.8

A
True False
0.8 0.2

C D

True False
True 0.2 0.8
False 0.36 0.64

D F
True False

True 0.8 0.2
False 0.05 0.95

C
True False
0.75 0.25

B
DS = B D

True False
True 0 1
False 1 0

(d) Two consistent linked BNs

70

 B/D A C
True/True True/False False/True False/False

True True 0 0.5635 0.0365 0
True False 0 0.1565 0.0435 0
False True 0 0.0365 0.1135 0
False False 0 0.0035 0.0465 0

(b) The joint distribution that identifies B
DL and its linked BNs are consistent

Figure 4.7 An example of consistent linked BNs

Assumption 4.1: In SLBN, all linked BN are consistent.

This is the first assumption SLBN demand from those who are expected to use SLBN

to model domain knowledge. Assumption 4.1 tells that the initial states of linked BNs

must be reasonably compatible. Or, the linked BNs are not describing the same domain,

and hence cannot be linked.

4.4 Summary

Our commonsense understanding of similarity is too vague to be formally defined and

specified. In this chapter we proposed the concept Semantic Similarity, whose properties

can be formally represented and hence utilized in intelligence systems. Variable Linkages

are the concrete probabilistic representations of semantic similarities. In this chapter, first

we introduced the variable linkage between pair-wise variables, which represents the

simplest semantic similarities. Using pair-wise variable linkages, we discussed the

semantics of variable linkages, and clarified the difference between semantic similarity

and conditional dependency. A variable linkage differs from an edge in BN in that

1. A variable linkage represents semantic similarities between variables, while a

BN edge represents conditional dependencies between variables.

71

2. The conditional probability that quantifies the semantic similarity of a variable

linkage is invariant with respect to an events:),|()|(evXYPXYPS X
Y == ,

where ev is a hard evidence in the source BN.

3. Probabilistic influences can only be propagated along the direction of variable

linkages, while BN edges support probabilistic influence propagating along

both directions.

We extended the definition of pair-wise variable linkage to represent similarities

between two sets of variables. In this extended definition, we stated restrictions on the

source and destination variables of variable linkages, and provided an informal

justification for these restrictions. Formal justifications and in-depth theoretical analysis

are provided in Chapter 6. Finally, we gave examples showing how to use variable

linkages to represent the relationship between concepts.

In the following chapters we will provide inference methods that utilize variable

linkages, reveal more features about variable linkages and give formal justifications for

SLBN.

72

5 Evidential Inference with Variable Linkage

The Variable Linkage is defined for two purposes: to describe semantic similarity by

probabilistic information, and to carry probabilistic influences from one BN to the other.

In this chapter, first we present informal descriptions on how hard evidence is propagated

across variable linkages. Then we propose an implementation using soft evidences and

virtual evidences. The justification of this method can be found in the next chapter.

In this and the following chapters, we will propose and discuss inference methods in

the scenario in which two BNs are linked by linkages of the same direction. Specifically,

suppose we are given two BNs NA, NB along with a set of linkage L1, … , Ln, all of which

have NA as the source BN and NB as the destination BN. In this scenario, we can simplify

the descriptions of problems, and hence clearly present our solutions. The proposed

algorithm can be easily applied to scenarios involving three or more linked BNs without

modifications.

5.1 Informal Descriptions of Probabilistic Influence via Linkages

In this section, we will illustrate how a hard evidence in the source BN should influence

the variables in the destination BN via the variable linkages according to the semantics of

variable linkages.

73

5.1.1 Probabilistic Influence on Destination Variables

We know, in SLBN, the prior probability distribution of the source and destination

variables are consistent with its variable linkage as suggested by Assumption 4.1. So by

default we have the following formula for a given linkage X
YL = <X, Y, NX, NY, X

YS >:

)()(XPSYP X
X

YY = , or

∑= i iXijSjY xPxyPyP)()|()(.

If an evidence ev is entered into NX, then in NX the belief on variables X is updated to

)|(veXP , and the belief on variables Y in NY should be updated as

)|()|(evXPSevYQ X
X

YY = (5.1)

This probabilistic influence is explained by Figure 5.1.

Because X
YS is not defined in either NX or NY, we define a probability distribution

),(SSS YXP for X
YS , where XS and YS are variables identical to X and Y respectively, and

initially)()|(),(XPXYPYXP XSSSSSS = , where)|()|(SSSS XYPYXP = . Because

variables XS are semantically identical to the variables X in NX, after we update)(XPX to

)|(veXPX , we use)|(veXPX as an external observation of XS and apply it as a soft

evidence to XS. Then belief on YS is updated by Jeffrey’s rule as:

)|()|()(evXQXYPYQ SSX SSSSS ∑= ,

74

where)|()|(veXPveXQ XSS = . Here because X
YS is invariant w.r.t. events in NX,

Jeffrey’s rule can always apply. For the same reason, we use QS(YS) as an external

observation and update Y using the soft evidence method. So finally we have

)|()|()|()()|(evXPSevXQXYPYQevYQ X
X

YSSX SSSSSY =∑== .

Figure 5.1 Probabilistic influence from the source variables to the destination

variables via a variable linkage

Although the value of)|(evYQY can be calculated by equation (5.1), it cannot be

directly represented in the destination BN. As we have discussed in Chapter 3, virtual

evidence and soft evidence are both capable of representing external uncertain evidential

findings. So here we can use a soft evidence se to represent the updated result of the

destination variables Y as

)|()|(evYQseYP YY = . (5.2)

5.1.2 Probabilistic Influence on Other Variables

Now we can conduct evidential update from source variables to destination variables over

a variable linkage, and in this section we will discuss how the other variables should be

75

updated. First, we use a theorem to describe how a variable is influenced by other hard

evidences in a single BN.

Theorem 5.1: In a BN, belief on variable A is updated if and only if

(1) one of A’s descendents is instantiated, or

(2) one of A’s ancestors is instantiated, or

(3) one of A’s ancestors’ descendents is instantiated, or

(4) A is instantiated.

Proof.

Sufficiency:

Suppose in the given BN, variable B is instantiated to one of its state and this belief

change updates the belief on A. Then

(1) If B is A’s descendent, then it is case a).

(2) If B is A’s ancestor, then it is case b).

(3) If A and B are not in a path but share any descendant, then one of the shared

descendants must be instantiated so that A and B are d-connected. Then this is

also case b).

(4) If A and B are not in a path but share any ancestor, then this is case c).

(5) Else, B is A, and this is case d).

Necessity:

From the semantics of BN, we know that in any of the 4 cases, the belief on variable A is

76

updated. ¦

We call situation a) and d) as A is influenced by a hard evidential finding from bottom,

and situation b) and c) as A is influenced by a hard evidential finding from top.

Using Theorem 5.1, we can show by equations that in what manner the probabilistic

influences are propagated from the source variables to the destination variables. Let E

denote the hard evidences in the source BN NX, X
YL = <X, Y, NX, NY, X

YS > denote a

linkage between NX and NY, and MX denotes the variables in the Markov blanket of

variables X. Then because MX d-separate X from the other variables, the belief on X is

updated by E as

∑ === i iXiX EmMPmMXPEXP)|()|()|(, (5.3)

where mi denotes a state configuration of MX. Using equations (5.1) and (5.3) we have

Q(Y|E) = X
YS P(X|E)

 ∑ === i iXiX
X

Y EmMPmMXPS)|()|(

 ∑ ∑ ===== j i iXiXjjS EmMPmMxXPxXYP)|()|()|(

 ∑ ∑ ===== i j iXjjSiX mMxXPxXYPEmMP)|()|()|(.

Since)|(XYPS X
Y = is invariant w.r.t. instantiations of MX, we have

∑ === i iXiX EmMPmMYPEYQ)|()|()|(, (5.4)

77

which shows that Y is influenced by the hard evidences in NX through the Markov blanket

of X. Specifically, when the hard evidences are from the top of X, then the parents of X,

πX, d-separate X from the evidences. Then equation (5.3) changes to

∑ === i iXiX EpPpXPEXP)|()|()|(ππ .

And similar to the derivation of equation (5.4), we have

∑ === i iXiX EpPpYPEYQ)|()|()|(ππ . (5.5)

Similarly, when the hard evidences are from the bottom of X, then the children and the

parents of the children of X, λX, d-separate X from the evidences. Then we have

∑ === i iXiX ElPlXPEXP)|()|()|(λλ , and

∑ === i iXiX ElPlYPEYQ)|()|()|(λλ . (5.6)

As we have mentioned in Section 2.1, MX = πX +λX. So when the hard evidences

influence X from both top and bottom, all variables in the MX are used as equation (5.4)

shows.

From equations (5.3) – (5.5) we can conclude that no matter the hard evidences

influence source variables from top, from bottom, or from both sides, the probabilistic

influences are propagated to the source and destination variables via the same set of

variables. Moreover, because the semantic similarity is invariant with respect to the states

of the linked BNs, so, given a variable linkage, the belief change of its source variables

always leads to the belief change of its destination variables, and the belief change of

destination variables always follow the same quantification. Therefore, upon a hard

evidence, the source variables and destination variables are updated together and act as

78

if they were representing the same concept. This “as-if” statement is still informal, a more

rigorous justification will be provided in the next chapter.

Now we can tell how the evidence should be propagated in these three cases.

Case 1:

Figure 5.2 Probabilistic influence from a variable linkage: Case 1.

In Figure 5.2, black arrow stands for the propagation of the probabilistic influence

from bottom. Suppose we have a linkage X
YL = <X, Y, NX, NY, X

YS >. Evidence ev

influences X from bottom and no evidence influences X from top. From equation 5.6 we

know through X
YL , ev also influences Y from bottom. Then, in the same way as in regular

BN, ev’s probabilistic influence are propagated as the following equations shows:

∑=
Y

YY evYPYPevP)|()|()|(ππ , and (5.7)

∑=
Y

YY evYPYPevP)|()|()|(λλ . (5.8)

79

If we use a soft evidence se to update Y as suggested by equation (5.2), both πY and λY

can be correctly influenced:

 ∑=
Y

YY seYPYPseP)|()|()|(ππ , and (5.9)

∑=
Y

YY seYPYPseP)|()|()|(λλ (5.10)

Case 2:

Figure 5.3 Probabilistic influence from a variable linkage: Case 2.

In Figure 5.3, white arrows stand for the propagation of the probabilistic influence

from top. Suppose we have a linkage X
YL = <X, Y, NX, NY, X

YS >. Evidence ev influences X

from top and no evidence influences X from bottom. From equation (5.5) we know

through X
YL , ev also influences Y from top. Then ev’s probabilistic influence are

propagated as the following equations shows:

)()|(YY PevP ππ = , and (5.11)

80

∑=
Y

YY evYPYPevP)|()|()|(λλ . (5.12)

If we use soft evidence se to update Y as suggested by equation (5.2), λY can be

correctly influenced, but πY would also be updated by soft evidence using equation (5.9).

So in the inference process, we need to apply additional soft evidence to variables in πY

so that the influence of se is eliminated. That is to find seπ for the variables πY such that

)(),|(YY PseseP ππ π = . (5.13)

Case 3:

Figure 5.4 Probabilistic influence from a variable linkage: Case 3.

In Figure 5.4, black arrows stand for the propagation of the probabilistic influence

from bottom, white arrows stand for the propagation of the probabilistic influence from

top, and striped arrows stand for the propagation of the combined probabilistic influences.

Suppose we have a linkage X
YL = <X, Y, NX, NY, X

YS >. Evidence ev1 influences X from

81

top and evidence ev2 influence X from bottom. Then through X
YL , ev1 influences Y from

top and ev2 influences Y from bottom, ev1 and ev2 may or may not be the same evidence.

In this case, ev1 and ev2’s probabilistic influences are propagated as the following

equations shows:

∑=
Y

XXYY evevYPYPevevP),|,(),|(),|(2121 ππππ , and (5.14)

∑=
Y

YY evevYPYPevevP),|()|(),|(2121 λλ . (5.15)

Similar to case 2, if we use soft evidence se to update Y, λY can be correctly

influenced, but πY would be updated by soft evidence using equation (5.9). So in the

inference process, we need to apply additional soft evidence to πY to correct the influence

of se. So we want to find seπ for the variables πY such that

),|(),|(21 evevPseseP YY ππ π = . (5.16)

5.2 Evidential Update on Destination BN

After deriving equations (5.4) – (5.6) for passing probabilistic influence from the source

BN to the destination BN through variable linkages, we now develop an algorithm for

belief update on the destination BN. This algorithm incorporates soft evidences and IPFP

to manipulate the probabilistic influence passing through variable linkages, and it can be

realized as an extension of any current BN inference method. In our belief update method,

inference is divided into two parts: inference inside a single BN and inference across

variable linkages. The inference inside a single BN is the same as what is done by regular

BN inference method. The method of inference across variable linkages extends the

82

regular BN inference methods with rules to control the probabilistic influence along the

variable linkages.

5.2.1 Single Variable Linkage

First we provide an inference algorithm dealing with a single variable linkage between

two BNs. This algorithm is a straightforward implementation of what was described in

Section 5.1. In this algorithm, first we create a joint probability distribution for the given

linkage L: Q(πsrc, πdest, dest(L)), where πsrc = parent(src(L)), and πdest = parent(dest (L)).

From Assumption 4.1 we know linked BNs need to be consistent, and hence the

distribution Q(πsrc, src(L), πdest, dest(L)) can be obtained by IPFP (see Section 4.3). Then,

Q(πsrc, πdest, dest(L)) = ? src(L) Q(πsrc, src(L), πdest, dest(L)).

Similar to the process by which Q(πsrc, src(L), πdest, dest(L)) is obtained, Q(πsrc, πdest,

dest(L)) can also be obtained by IPFP directly.

Next we calculate Q(πsrc, πdest, dest(L) | ev) by entering ev’s probabilistic influence to

Q. The probabilistic influence from top is entered at πsrc, and the probabilistic influences

from bottom is entered at dest(L). Then Q is updated by IPFP, and the updated results are

entered into the destination BN.

Algorithm 5.1

Input: two linked BNs, a variable linkage, and hard evidences applied to the source BN.

Output: belief update result of the destination BN.

Methods:

83

function Propagate_Evidence(N1, HE, N2, L)

1 QLinkage = Construct_Linkage_JPD(N1, N2, L);

2 Update_Linkage_JPD (N1, HE, L, QLinkage);

3 Update_Destination_BN(L, QLinkage, N2);

function Construct_Linkage_JPD (N1, N2, L) return a Joint Probability

Distribution

1 πsrc = parent(src(L)); πdest = parent(dest(L));

2 Q0(πsrc,πdest, dest(L)) = {d(πsrc, πdest, dest(L))-1}; //initiate to uniform dist.

3 Q(πsrc,πdest) = P1(πsrc) P2(πdest); // assume πsrc and πdest are independent

4 Q(πsrc, dest(L)) = ? src(L)PS(dest(L)|src(L))P1(src(L), πsrc); //equation (5.2)

5 Q(πdest, dest(L)) = P2(πdest, dest(L));

6 QLinkage(πsrc,πdest, dest(L)) =

IPFP on Q0 (πsrc,πdest, dest(L))

with constraints Q(πsrc,πdest), Q(πsrc, dest(L)), and Q(πdest, dest(L));

7 return QLinkage(πsrc,πdest, dest(L));

function Update_Linkage_JPD (N1, HE, L, QLinkage)

1 influenceType = Check_Influence_Type(N1, L);

2 P(πsrc | HE) = P1(parent(src(L)) | HE); // by regular BN inference

3 P(dest(L) | HE) = ? src(L)PS(dest(L)|src(L)) P1(src(L) | HE); //Jeffrey’s rule

84

4 if (influenceType == FROM_TOP)

5

)(
)|(

))(,,())(,,(
srcLinkage

src
destsrcLinkagedestsrcLinkage Q

HEP
LdestQLdestQ

π
π

ππππ = ;

6 if (influenceType == FROM_BOTTOM)

7
))((
)|)((

))(,,())(,,(
LdestQ

HELdestP
LdestQLdestQ

Linkage
destsrcLinkagedestsrcLinkage ππππ = ;

8 if (influenceType == FROM_BOTH)

9 Q0(πsrc,πdest, dest(L)) = QLinkage(πsrc,πdest, dest(L));

10 QLinkage(πsrc,πdest, dest(L)) =

IPFP on Q0(πsrc,πdest, dest(L))

with constraints P(dest(L) | HE) and P(πsrc | HE));

function Update_Destination_BN(L, QLinkage, N2)

1 Set_Soft_Evidence(N2, dest(L), QLinkage (dest(L)));

2 if (L.influenceType== FROM_TOP || FROM_BOTH)

3 πdest = parent(dest(L));

4 Set_Soft_Evidence (N2, πdest, QLinkage (πdest));

5 Soft_Evidential_Update(N2);

The function Set_Soft_Evidence(N, X, Q) set a soft evidence of target distribution Q

on variables X in BN N. The entered soft evidence does not cause belief update until the

function Soft_Evidential_Update(N) is called.

85

QLinkage =

D A C

True False
True True 0.0365 0.5635
True False 0.0435 0.1565
False True 0.1135 0.0365
False False 0.0465 0.0035

Figure 5.5 The QLinkage for linkage B
DL in Figure 4.9

Now we explain our algorithm using the example in Figure 4.9. Figure 5.5 depicts the

QLinkage = Q(A, C, D) for the linkage B
DL . The full joint probability distribution Q(A, C, B,

D) can be found in Figure 4.9. Here we present three test cases:

1) If we instantiate A to state True, then in function Update_Linkage_BN() the

probabilistic influence is entered to QLinkage as Q(A) = (1.0, 0), and in function

Update_Destination_BN() the soft evidence applied to the destination BN is Q(C) =

(0.75, 0.25) and Q(D) = (0.1, 0.9).

2) If we instantiate E to the state True, then in function Update_Linkage_BN() the

probabilistic influence is entered to QLinkage as Q(D) = (0.419, 0.581), and in function

Update_Destination_BN() the soft evidence applied to the destination BN is Q(D) =

(0.419, 0.581).

3) If we instantiate A to the state True and E to the state True, then in function

Update_Linkage_BN() the probabilistic influence is entered to QLinkage as Q(A) = (1.0,

0) and Q(D) = (0.202, 0.798), and in function Update_Destination_BN() the soft

evidence applied to the destination BN is Q(C) = (0.717, 0.283) and Q(D) = (0.202,

0.798).

86

5.2.2 Multiple Variable Linkages

When multiple linkages are present, belief update in the destination BN becomes more

complicated because some variables can be affected by probabilistic influences from

more than one linkages. For example, suppose we have edges A? B and A? C in the

destination BN, B ∈dest(L1), and C ∈dest(L2), when an evidential influence is

propagated using both L1 and L2, the belief on A cannot be updated by

Update_Destination_BN() using either one of the two linkage, but should be updated by

the accumulated influences from both L1 and L2. Therefore, additional rules should be

applied in Update_Destination_BN() to accumulate the influence from different linkages.

We know soft evidence only describes the result of an external probabilistic

influence, so it is proper to use it to update the belief on the destination variables dest(L)

because the belief on the destination variables are determined only by external

probabilistic influences from the source BN. And to accumulate probabilistic influence

from different sources, we use likelihood ratios to represent how the external

probabilistic influences update the target variables rather than use soft evidences to

specify the belief update results. The update result of likelihood ratios can be

accumulated using the Bayes inference of BN. As we had stated in Chapter 3, soft

evidence and virtual evidence are equivalent in expressing external observations. In the

Case 2 discussed in Section 5.1.2, when we use virtual evidences to represent soft

evidences, to satisfy equation (5.11) and (5.12), not considering the influences from other

linkages, we need to find and apply ve to Y and veπ to πY such that

)()|(),|(YYY PevPveveP πππ π == , and (5.17)

87

∑==
Y

YYY evYPYPevPveveP)|()|()|(),|(λλλ π . (5.18)

To achieve (5.17) and (5.18), an iteration method is used to find ve and veπ:

1
0)()|()(−⋅= YPevYPvelh , (5.19)

Iterate the following equations until lh(vej) converges:

)(),|()|()(1
1

1 −
−

− ⋅⋅= jjj velhveveYPevYPvelh π , and (5.20)

1))()|(()(−∑= Y jY velhYPvelh ππ , (5.21)

where lh(ve) is the likelihood ratio of virtual evidence ve. Equation (5.21) is derived from

(5.17) by the following steps:

)(),|(YY PveveP ππ π =

)()()|(YY PvelhveP ππ π =⋅⇔ (from equation (3.5))

)()()|()|(YY Y PvelhveYPYP ππ π =⋅∑⇔

)()()|(
)(

)()|(
YY

YY PvelhveYP
YP

PYP
π

ππ
π =⋅∑⇔

1)()|(
)(

)|(
=⋅∑⇔ π

π
velhveYP

YP
YP

Y
Y

1)()()|(=⋅∑⇔ ππ velhvelhYPY Y (from the definition of likelihood ratio)

1))()|(()(−∑=⇔ Y Y velhYPvelh ππ

In each iteration step, virtual evidence vej tries to modify the distribution of Y to

P(Y|ev), while the virtual evidence veπ can eliminate the probabilistic influence from Y to

88

πY but shifts Y off its target distribution at the same time. So we need to iterate, and if this

iteration converges, it stops when equation (5.18) is satisfied.

The iteration of equation (5.19) – (5.21) solves the probabilistic influence problem in

our observation case 2, and a similar method could be applied for case 3. In the Case 3 of

Section 5.1.2, we need to find ve and veπ which satisfy equations (5.14) and (5.15), such

that

∑==
Y

XXYYY evevYPYPevevPveveP),|,(),|(),|(),|(2121 πππππ π , (5.22)

∑==
Y

YYY evevYPYPevevPveveP),|()|(),|(),|(2121 λλλ π . (5.23)

Equation (5.23) and (5.18) are fairly the same. The difference between (5.22) and (5.17)

is that in (5.22), veπ eliminates the influence from Y to πY, while in(5.17), veπ not only

eliminates the influence from Y to πY, but also adds the correct influence from Y to πY. To

achieve (5.22) and (5.23), an iteration method is used to find ve and veπ:

1
210)(),|()(−⋅= YPevevYPvelh , (5.24)

Iterate the following equations until lh(vej) converges:

)(),|(),|()(1
1

121 −
−

− ⋅⋅= jjj velhveveYPevevYPvelh π , and (5.25)

1
21

1)(),|())()|(()(−− ⋅⋅∑= YYY jY PevevPvelhYPvelh ππππ , (5.26)

Algorithm 5.2

Input: Two linked BNs, a set of variable linkages, and hard evidences applied in the

source BN.

89

Output: Propagate the hard evidences from source BN to the destination, and returns the

belief update result of the destination BN.

Methods:

function Propagate_Evidence(N1, HE, N2, L[])

1 for i=1 to sizeof(L[])

2 QLinkage[i] = Construct_Linkage_JPD(N1, N2, L[i]);

3 Enter_Evidence(N1, HE);

4 for i=1 to sizeof(L[])

5 Update_Linkage_JPD (N1, L[i], QLinkage[i]);

6 Update_Destination_BN(L[], QLinkage[], N2);

function Update_Destination_BN(L[], QLinkage[], N2)

1 d = 1; i = 0; j = 0;

2 πdest = parent(dest(L[i])); X is the set of variables in N2;

3 Q0 (X)= P2(X);

4 while (d > threshold)

5 lhdest = QLinkage(dest(L[i])) · Qj(dest(L[i]))-1;

6 Set_Likelihood_Ratio(N2, dest(L[i]), lhdest);

7 if (L[i].influenceType == FROM_TOP || FROM_BOTH)

8 lhπ = (? dest(L[i])Qj(dest(L[i])| πdest) lhdest)-1; //equation (5.21)

9 if (L[i].influenceType== FROM_BOTH)

10 lhπ = lhπ · Qj(πdest) · P2(πdest)-1; //equation (5.26)

11 Set_Likelihood_Ratio(N2, πdest, lhπ)

90

12 Qj+1(X) = Virtual_Evidential_Update(N2);

13 d = distance(Qj(X), Qj+1(X));

14 j = j+1; i = j mod sizeof(L[]);

5.3 Summary

In this chapter, we depict how the hard evidences in the source BN are propagated to

influence the variables in the destination BN via variable linkages, and then give

implementations utilizing soft evidences and virtual evidences.

 By equation (5.1) we state that the belief on the destination variables is determined by

the belief on the source variables, and by equations (5.4) – (5.6) we tell that the evidential

probabilistic influences are propagated to the destination variables through the same set

of variables as to the source variables. By differentiating how the probabilistic influences

are entered to the source variables, we know how the destination BN should be updated.

When the hard evidences influence the source variables from top, the destination BN is

updated using equations (5.7) and (5.8). When the hard evidences influence the source

variables from bottom, the destination BN is updated using equations (5.11) and (5.12).

When the hard evidences influence the source variables from both sides, the destination

BN is updated using equations (5.14) and (5.15).

 The probabilistic influences from the source BN to the destination BN are viewed as

soft evidences in the destination BN which are further represented as virtual evidences in

our algorithms. We calculate the results of these probabilistic influences in a joint

probability distribution QLinkage, which includes the variable linkage, the source and

destination variables and their parents. Then the belief update is firstly calculated over

91

QLinkage, the results are then applied to the destination BN. When multiple variable

linkages are used together, soft evidences are represented by virtual evidences, which are

carefully manipulated to accumulate the probabilistic influences from different linkages.

 The inference algorithms proposed in this chapter is formally justified in Chapter 6

with the help of J-Graph.

92

6 J-Graph for SLBN

The semantic similarity between variables in different BNs is a type of relation beyond

the semantics of the BN edge, so how to justify the proposed inference methods which

involves two types of relations is an important issue.

In Section 6.1 we will show that the global knowledge by which the SLBN is based

on is generally not accessible, but we still can join the knowledge of each linked BNs

together using variable linkages. However, this joint knowledge is not in the form of BN.

In Section 6.2 we will make some assumptions which can be used to justify the inference

methods we proposed in Chapter 5. These assumptions can further support us in

constructing the joint knowledge for a SLBN. This joint knowledge of SLBN, named J-

graph, is proposed in Section 6.3 and its construction method is given in Section 6.4. In

Section 6.5, we justify that J-graph correctly encodes the variable linkages by showing

that the inference on J-graph is exactly the same as the inference on SLBN.

6.1 The Unaccessible Global Knowledge of SLBN

Now we consider answering the question that under what circumstances variable linkages

can be created between given BNs. In MSBN, all linked networks are required to form a

unique global Bayesian network, which is a very restrictive requirement and is not

achievable in many use cases. In contrast, in SLBN, linked BNs are assumed to be

separately developed rather than sectioned from a single BN. Besides, neither does SLBN

assume that communication can always be carried between any BNs because of the

93

directionality of the variable linkages. Moreover, it is clear that inference cannot be

correctly conducted if these independently constructed BNs model the causalities in the

domain substantially differently. Therefore, we want some formal measurements or

criteria to check if the given BNs and linkages can utilize SLBN’s inference methods.

One criterion could be to check if a global knowledge can be constructed comprising the

separately developed BNs’ probability distributions and conditional interdependencies of

the given variable linkages. This global knowledge must conform with the semantics of

SLBN and support the inference methods of SLBN.

The ideal solution is that the global knowledge could be in form of a BN and each

linked BN is the projection of the global BN on an aspect of domain knowledge. More

precisely, it would be ideal if there exists a global Bayesian network for the linked BNs

such that:

1 every variable in the linked BN has a representation in the global BN;

2 the probability distribution of each linked BN is the marginalization of the

probability distribution of the global BN; and

3 the conditional probability in each variable linkage is also the marginalization of

the probability distribution of the global BN.

However, even if this global BN exists, it may not be uniquely identified by the

knowledge encoded in BNs and variable linkages. In general, the global BN for a given

SLBN is not accessible because the linked BNs do not provide enough information to

construct a global BN for the following reasons:

94

1 a variable linkage quantifies how the source variables is similar to the destination

variables, but the similarity of the reverse direction may not be available;

2 it is unknown that how to joint the linked variables as they have separate CPTs

and different local parents;

3 the variables that are located in different local BNs and are not similar may have

casual influences to each other, and since they are in different local BNs, their

interdependencies are not directly captured by the SLBN.

So, we can see that the SLBN are all we know about this domain and the inference of

SLBN is reasoning on this available domain knowledge.5

Although the global knowledge is not accessible, it does exist for the given SLBN, or

the inference in SLBN would be impossible. In the scenario of SLBN, each of the linked

BNs encodes only an aspect of the global knowledge and all variables and the

dependencies between the variables in the linked BNs are theoretically derived from a

global knowledge. And because of this, the linked BNs and the variable linkages need to

be consistent to some extent, and such consistency requires the linked BNs and the

linkages must obey some restrictions. The Assumption 4.1 is one of these restrictions. In

the next section, more restrictions are expressed as assumptions on SLBN.

6.2 Assumptions for SLBN

In this section we claim some restriction about the linked BN and variable linkages to

ensure the lined BNs and the variable linkages can be joined into a global knowledge.

5 However, from another point of view, if the global BN is already known, many other approaches could be
applied, such as MSBN, and such problem is beyond the discussion in this paper.

95

These restrictions are claimed in the form of assumptions and will not be justified. But

they are reasonable in the semantics of BN.

Assumption 6.1: In SLBN, one variable can be the source variable or destination

variable of only one variable linkage between a given pair of BNs.

Variable linkages cannot share source variables and destination variables. If variable

A is similar to variable B and variable C, then A is also similar to the union of B and C.

So rather than creating two linkages from A to B and A to C (or from B to A and C to A),

SLBN require a single linkage from A to both B and C (or from B and C to A).

If Assumption 6.1 is violated, the linked BNs may also be able to join to a global

knowledge. However, Assumption 6.1 will greatly reduce the complexity of the joining

process. In other words, Assumption 6.1 is an engineering assumption. In Section 6.4.1

we will see that with the support of Assumption 6.1, each variable in the SLBN will only

have one representation in the jointed knowledge.

Assumption 6.2: In SLBN, all linked BNs have the same causality. Specifically, given

two linked BNs NX and NY, any path path(A, B) in NX and path(C, D) in NY can interpret

the domain at the same time.

The causality of a BN refers to the graph structure by which the BN interpret the

relationship between the variables of the domain. According to the semantics of Bayesian

network, one distribution can be encoded by multiple different BNs, all of which

represent same conditional interdependencies using different structures. Assumption 6.2

requires only BNs that have identical interpretation about domain knowledge can be

jointed together. For example, give a probability distribution P(Diabetes, Hyperglycemia),

96

we can use two graph structures to build a BN to encode this distribution: Diabetes ?

Hyperglycemia, and Hyperglycemia ? Diabetes. These different graph structures present

different interpretations for the domain. The graph structure Diabetes ? Hyperglycemia

presents the causal relation in which diabetes is the cause of hyperglycemia, while the

graph structure Hyperglycemia ? Diabetes presents the abductive relation in which

hyperglycemia causes the suspicion of diabetes. Both of these graph structures are good

for their own purpose, but cannot co-exist in the same BN.

Since all linked BNs are derived from a global knowledge and describe different

aspects of the same domain, all paths from them should originate from the same model,

and hence should interpret the domain at the same time.

Assumption 6.2 is not really operational and cannot be checked within SLBN.

However, it can be checked by a domain expert.

Assumption 6.3 (Interdependencies between variables across variable linkages): Given

linkage X
YL = <X, Y, NX, NY, X

YS >, and suppose NX encodes casual sequences by path(A, X1)

and path(X1, B), where X1∈X, A and B are variables in NX. Then ∀Yi ∈Y, create path(A,

Yi) and path(Yi, B), and they can interpret the domain with all paths in NY at the same time.

Assumption 6.3 actually claims that linked variables have the same causes and effects

as if they were representing the same concept. This is consistent with the claim that the

linkages are invariant with respect with the other evidences. As has been discussed in

Section 5.1.2, the belief on the destination variables are always updated at the same time

as the source variables and are always chaged following the same quantification.

97

Figure 6.1 depicts an example explaining Assumption 6.3. In Figure 6.1 (a) we

present a BN modeling the diagnosis of a car’s battery subsystem. The SLBN derived

from this BN is depicted in Figure 6.1 (a) by SLBN. Figure 6.1 (b) depicts the derived

SLBN, where a linkage is created for identical variables C and C’. Note that the given

linkage’s source and destination, C and C’ in Figure 6.1 (b), are represented by node C in

the original BN of Figure 6.1 (a). Figure 6.1 (c) depicts another two linked BNs which try

to model the same domain. However, in Figure 6.1 (c) the destination BN has a different

interpretation about the domain than the source BN. Clearly, path(A, C) in the source BN

and path(E, C) in the destination cannot be consistent interpretations of the domain as

they represent contrary causalities. So we say the linked BNs in Figure 6.1(c) are not a

valid SLBN according to Assumption 6.3.

light BatVolt
bright dim off

strong 0.94 0.01 0.05
weak 0 0.95 0.5
dead 0 0 1

 Alternator
Okay Faulty
0.997 0.003

Battery Age
new old very old
0.4 0.4 0.2

Battery voltage Alter BatAge
strong weak dead

Okay new 0.479 0.17 0.351
Okay old 0.402 0.175 0.423
Okay very old 0.301 0.2 0.499
Faulty new 0.008 0.30 0.692
Faulty old 0.004 0.2 0.796
Faulty very old 0.002 01 0.898

Starter BatVolt

Okay Faulty
strong 0.98 0.02
weak 0.90 0.10
dead 0.10 0.90

(a) A car diagnosis BN.

98

C: Battery voltage BatAge

strong weak dead
new 0.478 0.170 0.352
old 0.401 0.175 0.424

very old 0.300 0.200 0.500

C’: Battery voltage Alter
strong weak dead

Okay 0.413 0.178 0.409
Faulty 0.005 0.220 0.775

(b) Linked BNs that are consistent with the car diagnosis BN in (a).

Unlisted CPTs are the same as what are listed in (a).

C’: Battery voltage

HeadLi
strong weak dead

bright 1 0 0
dim 0.024 0.976 0
off 0.047 0.020 0.933

Alternator BatVolt

Okay Faulty
strong 1.0 0.0
weak 0.996 0.004
dead 0.994 0.006

(c) Linked BNs that are inconsistent with the car diagnosis BN in (a).

Unlisted CPTs are the same as what are listed in (a) and (b).

Figure 6.1 A car diagnosis BN and its derived Linked BNs

Theorem 6.1: In SLBN, two linkages cannot be crossed. Specifically, for two

linkages X
YL = <X, Y, NX, NY, X

YS > and '
'

X
YL = <X’, Y’, NX, NY, '

'
X

YS >, if there exists X1∈X,

99

X1’∈X’ such that there exist path(X1, X1’), then all variables in X must not be the

descendant of X’, and all variables in Y must not be descendant of Y’.

Proof.

We prove this theorem by contradiction.

1) As shown in Figure 6.2(a), suppose there exists X1, X2∈X, and X1’, X2’∈X’, and

path(X1’, X1, X2’, X2). From the definition of variable linkage (Definition 4.2) we

know as long as X1’ and X2’ are in a path, then all variables between them should

also be included as the source variables of L’. Therefore, this is a contradiction to the

definition of variable linkage.

2) As shown in Figure 6.2(b), suppose there exists X1, X2∈X, and X1’, X2’∈X’,

path(X1’, X1), path(X2, X2’), and X1’, X1 are neither ancestors nor descendants of X2,

X2’. From Assumption 6.3 we know, because of X
YL , the graph structure of NY can

interpret the domain along with path(X1’, Y1, X2’), and further with path(Y1, Y1’).

Similarly, because of '
'

X
YL , the graph structure of NY can interpret the domain along

with path(X2, Y1’, X1), and further with path(Y1’, Y1). This is a contradiction as a BN

cannot admit cyclic causal sequences.

3) As shown in Figure 6.2(c), suppose there exists X1∈X, X1’∈X’, and path(X1, X1’),

but one variable Y1∈Y is the descendant of one variables Y1’∈Y’ as path(Y1’, Y1).

From Assumption 6.3 we know, because of X
YL , NY can interpret the domain along

with path(Y1, X1’), and further with path(Y1, Y1’). This is a contradiction as a BN

cannot admit path(Y1, Y1’) and path(Y1’, Y1) at the same time.

100

From the above reduction we can conclude that Theorem 4.2 is correct. ¦

Theorem 6.1 claims that linkages cannot cross each other or the interdependency

between variables across the linkages cannot be modeled. In Section 6.4, we will show

Assumption 3 is the precondition to construct the joint knowledge for given SLBN.

(a) Crossed linkages of Case 1

(b) Crossed linkages of Case 2

101

 (c) Crossed linkages of Case 3

Figure 6.2 Crossed linkages

6.3 Definition of J-Graph

While the global knowledge of a SLBN is not accessible, Joint-graph (J-graph) is

proposed to capture all the domain knowledge expressed in a SLBN. A J-graph is a DAG

which encodes the probabilistic dependencies between the variables in SLBN. It is

converted from the linked BNs and models how the state change of variables in one BN

to influence variables in another BN across the linkages. In the remaining sections of this

chapter, Q denotes the probability distributions in the J-graph, and P denotes the the

probability distributions in BNs.

Definition 6.1 (J-graph): A Joint-graph (J-graph) for linked BNs is a graph for which the

following holds:

1. It is a directed acyclic graph (DAG).

2. It has a set of nodes of two types: variable nodes and linkage nodes. A variable

node represents a variable from the linked BNs and is labeled with its original

name and its original BN’s name. A linkage node represents a variable linkage

and its source and destination variables.

102

3. It contains a set of edges between nodes representing dependency relations

between variables like BN’s edges. For any edge A? B in the local BN, if A and

B are not involved in the same linkage, the J-graph has an edge A’? B’, where

A’ and B’ are the nodes that J-graph uses to represent A and B respectively.

4. Each node has a conditional probability table quantifies the effects its parents

have on the node such that

a) For each variable A in the local BN, Q(A’|π’(A’)) = P(A|π(A)), where π(A) is

the parents of A in its original BN, where A’ and π’(A’) are the nodes that J-

graph uses to represent A and π(A) respectively;

b) The CPT on linkage node satisfies Q(dest(L)| src(L)) = P(dest(L)| src(L)).

Please note that, different from the node in BN, a node in J-graph may represent one

variable (variable node) or multiple variables (linkage node).

6.4 Construction of J-Graph

Now we give an algorithm to construct the J-graph from a given SLBN:

6.4.1 Constructing the Structure of J-graph

Algorithm 6.1 (Construct the structure of a J-graph): Suppose we have linked Bayesian

networks N1, N2, … , Nn, where Ni = <Vi, Ei, Pi>, Vi is the set of nodes, Ei is the set of

edges, and Pi is the set of CPTs in Ni. Let Vi
* denote the nodes that are not involved with

any linkages in Ni, and Ei
* denote the edges whose both ends are nodes in Vi

*. iVV ∪= ,

103

**
iVV ∪= , iEE ∪= , and

**
iEE ∪= . Then the J-graph for the linked BNs is

constructed by the following steps:

1. Initialize J-graph for the linked BNs as empty;

2. For each node v* ∈ V*, create a variable node in the J-graph, and label the

variable with v*’s original name with the index of its origin BN as its label’s

superscript;

3. For each edge e* ∈ E*, create an edge between the corresponding variables in

the J-graph.

4. For each linkage, create a linkage node for it and label it as: “source nodes ?

destination nodes; source BN ? destination BN”, e.g. the linkage node for <{X1,

X2},{Y1}, N1, N2, S> should be “X1, X2 ? Y1; 1 ? 2”.

5. For each edge e ∈ E - E*,

a) if e is from a node v* ∈V* to a node v ∈ V - V*, and a linkage L involves v

in either src(L) or dest(L), create an edge from the variable node for v* to the

linkage node for L, if there does not exist one; or

b) if e is from a node v ∈ V - V* to a node v* ∈V, and a linkage L involves v,

create an edge from the linkage node for L to variable node for v*, if there

does not exist one; or

c) if e is from a node v1 ∈ V - V* to a node v2 ∈V - V*, a linkage L1 involves v1

and a linkage L2 involves v2, create an edge from the linkage node for L1 to

the linkage node for L2, if there does not exist one.

104

(a) J-graph for Figure 4.1(a)

(e) J-graph for Figure 4.1(b)

(c) J-graph for Figure 4.1(d)

Figure 6.3 J-graphs for linked BNs in Figure 4.1

105

Figure 6.3 presents the J-graphs for the linked BNs in Figure 1.

For convenience, we propose the terms principled ancestors and principled

descendants for variables in local BNs. For every variable v in every local BN, the

variables that are not known or not encoded as the ancestors of v by the local BN but are

encoded as the ancestors of v in the J-graph is called the principled ancestors of v, and

the variables that are not known or not encoded as the descendant of v by the local BN

but are encoded as the descendant of v in J-graph is called the principled descendants of v.

Lemma 6.1: For ever edge e: A? B in every linked BN, if A and B are not included in the

same linkage, the J-graph generated by Algorithm 6.1 has one edge e’: A’? B’ such that

A’ and B’ are J-graph nodes that represent A and B respectively.

Proof.

If A (or B) is involved in any linkage, from Assumption 6.1 we know it is involved in

only one linkage, and A’ (or B’) is the linkage node for it. if A(or B) is not involved in any

linkage, A’ (or B’) is a variable node. If both A’ and B’ are variable nodes, in step 3 an

edge is created for e. If one of A’ and B’ is a linkage node or both of them are linkage

nodes, in the step 5 an edge A’? B’ is created in the J-graph. ¦

Lemma 6.2. Algorithm 1 generates a DAG for the given SLBN.

Proof.

1) It is trivial to see the graph generated by the steps 1, 2 and 3 is a DAG.

2) In the J-graph, if we have edge A? B, and A is a linkage node, let LA denote the

linkage that A represents, then from Step 5 we know

a) if B is also a linkage node, let LB denote the linkage B represents. Then because

106

of the edge A? B, there exists X1∈src(LA) ∪ dest(LA) and Y1∈src(LB) ∪ dest(LB)

such that in a local BN X1? Y1. And from Theorem 6.1 we know linkages cannot

be crossed, so all variables in src(LA) cannot be the descendant of variables in

src(LB), and all variables in dest(LA) must be the ancestors or siblings in dest(LB).

Then in the J-graph there does not exist a path from B to A.

b) if B is a variable node, then from the edge A? B we know there exists X1

∈src(LA) ∪dest(LA) such that in a local BN X1? B. Suppose both X1 and B are

from the source BN, then from the definition of variable linkage we know that

for any Xi∈src(LA), if Xi? B? X1, B has to be in src(LA), which is a

contradiction to the fact that B is a variable node in J-graph. So either B and Xi

are not in a path or B ? Xi. The same conclusion can be obtained if both Xi and

B are from the destination BN. Therefore, we can conclude that in the J-graph

there will not exist a path from B to A.

From 1) we can conclude that the generated graph has no cycle including only

variable nodes, and from 2) we can conclude that the generated graph has no cycle

including any linkage nodes. Therefore we can conclude that the J-graph generated by

Algorithm 1 is a DAG. ¦

6.4.2 Constructing the CPT of J-graph

Algorithm 6.2 (Construct the CPTs for J-graph nodes): Given a set of SLBN and the

structure of the J-graph is generated by Algorithm 6.1. Let V denote the nodes in the J-

graph, VV denote the variable nodes, and VL denote the linkage nodes, then V = VV ∪ VL.

Also let π(Vi) denote node Vi’s parents, Q denote the probability distribution of the

107

constructed J-graph, and P denote the probability distribution in the linked BNs.

Although a node in J-graph may represent more than one BN variables, here we do not

make the distinction. Vi and π(Vi) represent both nodes and the variables the node

represents.

Assign CPTs to the J-graph’s nodes as follows:

1 For any Vi ∈VV, if π(Vi) ⊆ VV, from the step 3 of Algorithm 6.1, Vi and π(Vi)

must be from the same BN. Assign Q(Vi|π(Vi)) the value as the value of the CPT

that Vi has in its original BN:

))(|())(|(iiii VVPVVQ ππ = .

2 For any Vi ∈VL, let Li denote the linkage that Vi stands for. Then node Vi

represents a compound variable that is the combination of src(Li) and dest(Li) and

has d(src(Li))·d(dest(Li)) states. A probability distribution Q(src(Li), dest(Li),

π(src(Li)), π(dest(Li))) can be obtained by IPFP on an initially uniform

distribution with the following constraints:

))(())(|)(())(),((iiiSii LdestPLdestLsrcPLdestLsrcQ = ,

)))((),(()))((),((iiii LsrcLsrcPLsrcLsrcQ ππ = ,

)))((),(()))((),((iiii LdestLdestPLdestLdestQ ππ = , and

)))((()))((()))(()),(((iiii LdestPLsrcPLdestLsrcQ ππππ = ,

108

where P denotes the probability distribution from original local BN, and PS

denotes the similarity of Li. Compute Q(src(Li), π(src(Li)) | dest(Li), π(dest(Li)))

and convert it to P(V|π(V)).

3 For any Vi ∈VV, if some of its parents are linkage nodes, πj(Vi) ∈π(Vi) and π j(Vi)

⊆ VL. Without losing generality, assume πj(Vi) contains only one linkage node

and let Lj denote the linkage that πj(Vi) stands for. Linkage nodes πj(Vi) represents

variables src(Lj) and dest(Lj) and has d(src(Lj))·d(dest(Lj)) states. Also π(Vi) –

πj(Vi)+src(Lj) represents the parent variables of Vi in its original BN. Then from

Vi’s original BN obtain P(Vi|π(Vi)-πj(Vi)+src(Lj)). Now initiate a conditional

probability as









=
))((

1
))(|(

i
ii Vd

VVQ
π

π .

And then update the conditional probability as

))(),()(|(

))(),()(|(
))(|(

))(|(

jijii

jijii
ii

ii

LsrcXVVQ

LsrcXVVP
VVQ

VVQ

ππ

ππ
π

π

−

−
= .

and convert))(),()(|(jijii LsrcXVVP ππ − to P(Vi|π(Vi)). ¦

After filling the J-graph with CPTs by Algorithm 6.2, we can see that the probability

distribution of the constructed BN includes the probability distributions of the linked BNs.

Specifically, in step 1 the variable nodes has CPTs

))(|())(|(iiii VVPVVQ ππ = ;

109

in step 2 the linkage nodes has CPTS

)))((|)(()))((|)((iiii LsrcLsrcPLsrcLsrcQ ππ = and

)))((|)(()))((|)((iiii LdestLdestPLdestLdestQ ππ = ;

and in step 3 the variable nodes has CPTs

))(),()(|())(),()(|(jijiijijii LsrcXVVPLsrcXVVQ ππππ −=− .

Therefore, for each variable Xi, no matter it is represented by variable nodes or linkage

nodes, its conditional probabilities to its original parents remain unchanged. Specifically,

this is stated as

))(|())(|(iiii XXPXXQ ππ = .

 F B D

True False
True True 0.8 0.2
True False 0.05 0.95
False True 0.8 0.2
False False 0.05 0.95

C B D
True False

True True 0.35 0.65
True False 0.35 0.65
False True 0.8 0.2

B/D A C

True/True True/False False/True False/False
True True 0 0.9392 0.0608 0
True False 0 0.7825 0.2175 0
False True 0 0.2433 0.7567 0
False False 0 0.0700 0.9300 0

Figure 6.4 The J-graph for the example in Figure 4.9

110

Figure 6.4 depicts an example of J-graph for the linked BNs in Figure 4.9(a).

Theorem 6.2: Algorithm 6.1 and Algorithm 6.2 generate a J-graph for given SLBN.

Proof.

1 From Lemma 6.2 we know the graph structure generated by Algorithm 6.1 is a

DAG.

2 Algorithm 6.1 clearly generated the variable nodes and linkage nodes as the

definition requires.

3 From Lemma 6.1 we know every edge of the local BN has a correct

representation in the J-graph.

4 From Algorithm 6.2 we can see

a) for every variable A in every local BN, its representation in the J-graph has

the same conditional probability to its parents;

b) the IPFP process in step 2 of Algorithm 6.2 respects the conditional

probability that quantifies the given variable linkage.

Therefore, from the definition of J-graph we can see that Algorithm 6.1 and

Algorithm 6.2 generate the J-graph for given SLBN ¦

6.4.3 Validate a SLBN by its J-graph

Till now, we have claims quite some restrictions on SLBN, and some of them, like

Assumption 6.2 and 6.3, cannot be easily verified. J-graph is the tool that can help people

to valid an SLBN. Suppose a J-graph has been generated by Algorithm 6.1 and 6.2, then

111

we can check if the given SLBN satisfies all the restrictions from assumptions and

definitions by observing its J-graph:

1 If the J-graph for the given SLBN can be obtained by Algorithm 6.1 and 6.2,

then in the step 2 of Algorithm 6.2, a joint probability distribution Q(src(Li),

dest(Li), π(src(Li)), π(dest(Li))) has been constructed by IPFP for every variable

linkage Li. This Q can identify that the linkage is consistent with the linked

variables. As all linkages can be identified as consistent with the linked variables,

all linked BNs are consistent. Therefore, if a J-graph can be obtained by

Algorithm 6.1 and 6.2, the SLBN satisfies the Assumption 4.1.

2 Assumption 6.1 can be easily checked. It can also be checked in J-graph since if a

variable is involved by more then one linkage, then there would be more than one

linkage node representing it.

3 Assumption 6.2 can be checked by reviewing the J-graph and see if the J-graph

represents a reasonable model about the domain. However, this check still has to

be conducted by some domain expert.

4 If the structure of J-graph is not a DAG, then one or more restrictions in

Assumption 6.3 and the definition of variable linkage are violated: suppose we

have a cycle path in the generated J-graph, then the cycle must have a linkage

node. We can represent the cycle by path(A, B, C, A), where A is a linkage node.

a) If B and C are from the same BN, then the restrictions in the definition of

variable linkage are violated because B and C are not included as the source

variables of the linkage for A.

112

b) If B and C are from different BNs, then there must be another linkage node

between B and C so that variables from different BNs can form a path in J-

graph. So the path changes to path(A, B, A’, C, A), where A’ is also a linkage

node. Clearly, the linkage of A and the linkage of A’ are crossed. From the

proof of Theorem 6.1 we know if two linkages are crossed, then the

restrictions in either Assumption 6.3 or the definition of variable linkage are

violated.

6.5 Inference on J-graph

As we know, each BN represents a probability distribution, and intuitively the ideal

approach to conduct inference on SLBN could be to construct a global distribution using

the probability distributions of each linked BNs and conduct inferences on this global

distribution. Specifically, suppose N1, N2, … , Nn are a set of SLBN with linkages L1,

L2, … , Lm, and they are consistent. Ni encodes a probability distribution Pi on variables Xi.

Then ideally we have a joint distribution Q(X1, X2, … , Xn), such that Q(Xi) = Pi(Xi). Then

the issue is what kind of inference should be conducted on this distribution.

Although J-graph suggests the probability distribution Q exists for the given SLBN

by the following formula:

∏= i iin XXQXXXQ))(|(),,...,(21 π ,

its probability distribution is not suitable for evidential inference to be conducted on

using Bayes rule because the variable linkages carry no probabilistic dependencies but

semantic similarities.

113

(a) Two linked BNs

(b) the J-graph of (a)

Figure 6.5 An SLBN with two variable linkages

Figure 6.5(a) depicts two linked BNs with two variable linkages B
HL and E

KL and Figure

6.5(b) depicts the J-graph for the linked BNs in Figure 6.5(a). Suppose variable A is

instantiated to a1, if we want to update Q(A, … , L) using Bayes rule, we can treat the J-

graph as a Bayesian network and instantiate A = a1. From Figure 6.5(b) we can see that if

the J-graph is a BN, then

∑= JD AJDQJDFQAFQ ,)|,(),|()|(,

which indicates a probabilistic influence from J to F. Clearly a probabilistic influence

from J to F has a reverse direction than given linkages. Also according such inference

method,),,|()|(JDEKQEKQ ≠ , and so),|()|(AEKQEKQ ≠ , which shows E
KL is

not ensured to be invariant with respect to the evidence A= a1.

114

As J-graph joins all available information in the linked BNs and the variable linkages,

the inference on J-graph should be the inference on the linked BNs. In Chapter 5 we have

provided an inference method for SLBN, and here we will justify this method with the

help of J-graph. The belief update on the destination variables has been well justified in

Section 5.1.1 using Figure 5.2, and here we will justify the belief update methods

described in Section 5.1.2 by clarifying the probabilistic dependencies between variables

across linkages in J-graph.

Figure 6.6 depicts a J-graph in which a linkage is from B to B’, variables A, B and C

are from the source BN, and A’, B’, and C’ are from the destination BN. Because the

edges in J-graph also represent causal influences as BN’s edges, then their d-separation is

also the same as stated in BN6:

1 If B and D are not instantiated, A and A’ are d-separated by B/B’;

2 If B is instantiated, A and D’ are d-separated by B/B’;

3 If B is instantiated, D and A’ are d-separated by B/B’;

4 If B is instantiated, D and D’ are d-separated by B/B’.

Also, if two variables are not d-separated, they are d-connected. As probabilistic

influences can only be propagated along the direction of the variable linkage, if a variable

A in the source BN and a variable A’ in the destination BN are d-connected, then the

belief change on A can change the belief on A’, but the belief change on A’ cannot change

the belief on A.

6 Please note that only the variables in the source BN can be instantiated as probabilistic influences can
only be propagated from the source BN to the destination BN.

115

Figure 6.6 The probabilistic dependencies between variables across linkages

Therefore, as the d-connection properties of variables across the linkages are clarified,

we can tell how the variables in the destination BN should be updated:

1 When hard evidences update B from top (Case 1 in Section 5.1.2), D’ should be

influenced but A’ should not be updated as it is d-separated from A by the linkage

node.

2 When hard evidences update B from bottom (Case 2 in Section 5.1.2), both A’

and D’ should be updated.

3 When hard evidences update B from both top and bottom (Case 3 in Section

5.1.2), A’ and A are d-connected by the evidences from B’s bottom, and hence

both A’ and D’ should be updated.

Apparently, 1, 2, and 3 are exactly what we present in Section 5.1.2.

6.6 Summary

In this chapter we report our investigation on how to model the global knowledge of an

SLBN. It would be ideal that the global knowledge of an SLBN could be in the form of a

116

BN, but unfortunately, the information provided by the linked BNs and the variable

linkages is insufficient for us to identify a BN who encodes the global knowledge. So we

try to use another model to present the joint knowledge of an SLBN. This model, named

J-graph, joins together all available information from the linked BNs and the variable

linkages to a probabilistic graphical model. To support this join process, we claim three

assumptions on the variable linkages and the linked BNs. These assumptions reduce the

complexity of the linkages and require the linked BNs follow the same causal modeling.

Then we propose the definition of J-graph and a way to construct a J-graph for the given

SLBN. As J-graph needs the support from the restrictions of the assumptions and the

definitions, it can also be used to check if these restrictions are met. Finally, we use J-

graph to justify the inference methods provided in Chapter 5.

Till now, we have completely reported the SLBN as a principled framework that

supports distributed uncertainty reasoning. In the next chapter we will apply SLBN to

discover complex concept mappings between semantic web ontologies.

117

7 Concept Mapping Utilizing SLBN

Uncertainty becomes more prevalent in concept mapping between two ontologies where

it is often the case that a concept defined in one ontology can only find partial matches to

one or more concepts in another ontology. In other words, they are semantically similar

but not identical. Semantic similarities between concepts are difficult, if not impossible to

be represented logically, but can easily be represented probabilistically. Similar ideas

have motivated recent development of ontology mapping taking probabilistic approaches

(GLUE [13], CAIMAN [24], OntoMapper [38], and OMEN [27], see [31] for a survey

of existing approaches to ontology mapping, including those based on logical translation,

syntactical and linguistic analysis). However, these existing approaches fail to completely

address uncertainty in mapping. For example, GLUE captures similarity between two

concepts onto1:A and onto2:B by joint probability distribution P(A, B) obtained by text

classification of exemplars (semantically relevant text documents) to each concept. Then

onto1:A is mapped to onto2:C whose similarity to onto1:A, measured by, say their

Jaccard coefficients (computed from the joint distribution) [39], passes a threshold and is

the highest among all concepts in onto2. Here, onto1:A is taken as (semantically)

equivalent to onto2:C, the degree of similarity (and dissimilarity) between them will not

be considered in future reasoning (e.g., subsumption within onto2 after the mapping).

Also ignored are the other concepts that are also similar to onto1:A, such as the ancestors

of onto2.C (albeit at smaller degree).

118

 The work reported in this chapter utilizes SLBN along with BayesOWL to make full

use of the probabilistic information concerning relationships between concepts both

within and across BNs. As depicted in Figure 7.1 below, this ontology mapping

framework consists of three components: 1) a text classification based learner to learn

from web data the probabilistic ontological information within individual ontologies and

between concepts in two different ontologies; 2) a BayesOWL module to translate given

ontologies (together with the learned uncertain information) into BNs; and 3) an SLBN

module which takes a set of learned raw similarities as input, creates variable linkages

and finds new mappings between concepts from two different ontologies based on

evidential reasoning across two BNs.

Figure 7.1 Apply SLBN to ontology mapping

119

In Section 7.1 we will briefly introduce the learner model. The detail about

BayesOWL can be found at Section 2.4.1. In Section 7.2 we will present our experiments

on two real world ontologies.

7.1 Learning Probabilities from Web Data

Learning the probabilities for semantic similarity between concepts in two ontologies is

straightforward, assuming we have sufficient exemplars of good quality associated with

each concept. First, we can build a model (classifier) for each concept in Ontology 1

according to the statistical information in that the concept’s exemplars using a text

classifier such as Rainbow7 or Bayesian text classifier dbacl8. Then concepts in Ontology

2 are classified into classes of Ontology 1 by feeding their respective exemplars into the

models of Ontology 1 to obtain a set of probabilistic scores. These scores showing the

inter-concept similarity in a probability form. Concepts in Ontology 1 can be classified in

the same way into classes of Ontology 2. This cross-classification process (Figure 7.2)

helps find a set of raw mappings between Ontology 1 and Ontology 2. Similarly, we can

obtain prior or conditional probabilities related to concepts in a single ontology through

self-classification with the models learned for that ontology.

In the experiments, for each concept A, we search the web to obtain two sets of

exemplars: UA+ containing exemplars that support (or positively related to) A; and UA-,

containing exemplars that support the negation of (or negatively related to) A. Exemplars

in UA+ are obtained by searching the web for pages that contain the name of A and all

7 http://www-2.cs.cmu.edu/~mccallum/bow/rainbow
8 http://www.lbreyer.com/

120

names of A’s ancestors on the taxonomy, while that for UA- are obtained by search pages

that contain all names of A’s ancestors but not the name of A.

Figure 7.2 Cross-classification using Text Classifiers on Web Data

With all these documents, we can obtain joint probabilities of A and B by text

classification, similar to what is done in GLUE [13]: applying the classifiers of concepts

A and B to all text documents in U, where U denotes the union of A’s exemplars and B’s

exemplars, and classify them into four categories: UA+B+, UA+B-, UA-B+, and UA-B-. Then the

joint probabilities can be obtained by counting the items in each category, e.g., P(A, B)=

|UA+B+| / |U|.

7.2 Experiments

We have performed computer experiments on two small-scale real-world ontologies. Our

goal is to find how good the SLBN’s inference could help to find new ontology mappings.

121

7.2.1 Translating Taxonomies to BNs

We took the Artificial Intelligence sub-domain from ACM Topic Taxonomy 9 and

DMOZ10 (Open Directory) hierarchies and pruned some concepts to form two ontologies,

both of which have a single root node Artificial Intelligence. All other concepts in the

hierarchies are sub categories of AI. These two hierarchies differ in both terminologies

and modeling methods. DMOZ categorizes concepts by popularities of web pages to

facilitate people’s easy access to these pages, while ACM topic hierarchy categorizes

concepts from super to sub to structure a classification primarily for academics.

Table 7.1 Statistics of the experiment

Taxonomies

Nodes Depth
Total

Exemplar size
Avg. Exemplar

Size

Exemplar
Avg. #

Exp./node
ACM AI 15 3 19.7 MB 698 KB 24533 1636

DMOZ AI 25 3 29.2 MB 612 KB 35148 1406

For every concept, except the root, we obtained exemplars by querying Google as

described in the previous section. The statistics of these web pages is listed in Table 7.1.

We used Bayesian text classifier dbacl to create a model for each non-root concept X and

obtained the pair-wise conditional probability P(X | Parent(X)). The root nodes were

assigned a prior probability as (0.5, 0.5).

Then, using BayesOWL’s translation rules, the two ontologies were translated into two

BNs as shown in Figure 7.3.

9 http://www.acm.org/class/1998/
10 http://dmoz.org/

122

Figure 7.3 Bayesian network for ACM topics’ AI sub-domain and DMOZ’s AI

subdomain

123

7.2.2 Learning Uncertain Mappings

Raw semantic similarities P(A|B) were computed from P(A, B) for each pair of concepts

of the two BNs. The similarity between A and B were measured by their Jaccard

coefficient, computed from the joint probability. Table 7.2 lists the five most similar

concepts and five most different concepts in the learning result. The top three most

similar concepts are actually identical concepts. However, besides these three, another

pair of identical concepts is not measured as highly similar. They are

/Learning/Connectionism & Neural Net in ACM topic and /Machine Learning/Neural

Network in DMOZ. Their similarity is only 0.61. We speculate this is because the term

“connectionism” is not as popular at present as when ACM topic hierarchy was

constructed, and thus is not used along with “Neural Network” in most web pages.

Table 7.2 Five most similar concepts and most different concepts in the learning
result. The root concept’s name is omitted.

ACM topic DMOZ Similarity
/Knowledge Representation & Formalism Method /Knowledge Representation 0.96
/Natural Language Processing /Natural Language 0.90
/Learning /Machine Learning 0.88
/Learning /Knowledge Representation 0.81
/Applications & Expert System /Knowledge Representation 0.79

… …
/Fuzzy /Learning/Analog 0.03
/Learning/Induction /Learning/Game 0.02
/Deduction & Theorem Proving /Programming Language/Declarative 0.02
/Learning/Induction /Application 0.01
/Learning/Analogy /Agent 0.01

7.2.3 Inference with SLBN

Now we can create variable linkages using the learned raw similarities. Clearly, we

cannot create variable linkages for every pair of concepts where a learned similarity

exists because 1) one variable can only be involved in on linkage (Assumption 6.1), 2)

124

the variable linkages must be consistent with the linked variables, and 3) not all learned

similarities are correct. Clearly, if we can guarantee all the variable linkages we create are

true and consistent, then the more variable linkages we have, the more accurate the

inference result is.

In this experiment, we created variable linkages between the concepts that are very

similar. Specifically, the following linkages are created from the BN for DMOZ, Ndmoz, to

the BN for ACM, Nacm:

 L1 = < dmoz.kr, acm.krfm, Ndmoz, Nacm, S1>, where









==

9027.00973.0
0057.09943.0

).|.(1 krdmozkrfmacmPS , and

L2 = < dmoz.nl, acm.nlp, Ndmoz, Nacm, S2>, where









==

7680.02320.0
0057.09843.0

).|.(2 nldmoznlpacmPS .

Here acm.krfm stands for the concept /Knowledge Representation & Formalism Method

in the ACM ontology, acm.nl stands for the concept /Natural Language Processing in the

ACM ontology, dmoz.kr stands for the concept /Knowledge Representation in the DMOZ

ontology, and dmoz.nl stands for the concept /Natural Language in the DMOZ ontology.

These two pairs of concepts are the most similar concepts between the two ontologies,

and their prior distributions in the two BNs are consistent with the variable linkages.

Utilizing SLBN allows us to conduct probabilistic reasoning far beyond finding the

best concept match. To illustrate our point, consider the example of finding a description

125

of DMOZ’s /Knowledge Representation/Semantic Web (dmoz.sw) in ACM topics. The

two most semantically similar concepts to dmoz.sw in ACM are

• /Knowledge Representation and Formalism Method/Relation System (acm.rs) and

• /Knowledge Representation and Formalism Method/Semantic Network (acm.sn)

with the learned joint distributions









=

07.021.0
12.060.0

).,.(rsacmswdmozP and









=

04.025.0
13.058.0

).,.(snacmswdmozP ,

and the respective Jaccard coefficients J(dmoz.sw, acm.rs) = 0.64, and J(dmoz.sw, acm.sn)

= 0.61. The similarity between dmoz.sw and acm.krfm, the super class of acm.rs and

acm.sn, is even less: J(dmoz.sw, acm.krfm) = 0.49. Apparently, there is no ACM concept

that is identical to dmoz.sw, so it must be described by a composite expression involving

multiple ACM concepts. Regular ontology mapping systems, such as GLUE, would fail

to find a concept mapping for dmoz.sw at this stage.

From the above joint probabilities, we can see that dmoz.sw is neither a sub-concept

nor a super-concept of acm.rs and acm.sn, but has a sizable overlap with each of them.

From the following joint probabilities









=

6557.00323.0
0498.02612.0

).,.(snacmrsacmP ,

we can see that acm.rs and acm.sn also overlap much with each other.

126

Using the linkages L1 and L2, we can obtain the conditional probabilities of Q(acm.rs,

acm.sn | dmoz.sw) by the following steps: 1) instantiate dmoz.sw to its state True; 2)

propagate the probabilistic influences from Ndmoz to Nacm via L1 and L2. In this case, the

source variable of L1, dmoz.kr is influenced from bottom, and the source variable of L2,

dmoz.nl, is influenced from top; 3) update the belief of Nacm to obtain Qacm(acm.rs,

acm.sn, | dmoz.sw = True). Then we calculate Qacm(acm.rs, acm.sn, | dmoz.sw = False)

analogously with dmoz.sw instantiated to its state False.

From Qacm(acm.rs, acm.sn | dmoz.sw), we find that

Qacm(acm.rs = True ∨ acm.sn = True | dmoz.sw = True) = 0.9646.

And we can further calculate Q(acm.rs, acm.sn, dmoz.sw) using prior of Pdmoz(dmoz.sw)

in Ndmoz and estimate the similarities (the Jaccard coefficient) of dmoz.sw and acm.rs ∨

acm.sn:

 J(dmoz.sw, acm.rs ∨ acm.sn) = 0.7250.

From the above results we can conclude that the union of acm.rs and acm.sn is a good

mapping of dmoz.sw.

127

8 Conclusion and Discussions

The Bayesian network is an effective representation of probabilistic information using

graphical structures. In real world applications, BNs can be easily used to model domain

concepts and the probabilistic dependencies between domain concepts by variables with

finite states and conditional probabilities between variables. However, inference on BN is

not so straightforward. To utilize the structure of the network for computational

efficiency, BN localizes the probabilistic reasoning to message passing between

neighboring variables and avoids directly updating the belief on the full JPD. As a result,

BN inference and its justification are very complicated. Inference across multiple BNs is

therefore even more complex and challenging.

This thesis reports our efforts on developing a principled framework that supports

probabilistic inference across separately developed BNs. We have addressed the issues in

connecting different BNs using semantically similar variables and presented a set of solid

theoretical results for this framework. First, we proposed the definition of semantic

similarity, a similarity that can be quantified and used in probabilistic systems. Then

semantic similarities are embodied by variable linkages and quantified by conditional

probabilities. SLBN was proposed as a set of variable linkages and their linked BNs. To

ensure consistency among SLBN components and to guarantee correct propagations of

probabilistic influences in the system, some restrictions have been imposed to the

variable linkages and their linked BNs. In the inference process, we take a novice

approach of using soft evidence and virtual evidence to represent probabilistic influences

from one BN to the other and developed algorithms for belief update with such uncertain

128

evidences. Finally we developed a new graphical probabilistic model, J-graph, to

represent the joint knowledge of a SLBN and use it to justify the inference process of

SLBN.

There are several issues that may deserve further exploration in the future work:

1 How to obtain or discover the semantic similar variables? This is a very

important issue when we want to apply SLBN to solve a real world problem. This

process could be domain specific, and similar concepts can be either discovered

by an automatic or supervised machine learning process, or specified by domain

experts.

2 How to effectively create variable linkages from the discovered similar concepts?

Basically, it will be very useful to have a set of rules, telling how to use variable

linkage to connect given similar concepts such that the generated SLBN is

correct, effective and efficient.

3 The inference methods discussed in this thesis assumes we are aware of all the

linkages and linked BNs, but what if this is not true? A future work could be to

deploy the linked BNs into agents and try to minimize the exchanged information

during the inference process.

4 J-graph is a start point at which more properties about SLBN can be discussed

and analyzed. For example, can we stress more assumptions to SLBN so that

inference can be conducted on both directions, and hence change J-graph to a

BN? And conversely we may use J-graph to analyze the consequences if some of

the assumptions are not held.

129

5 The soft evidential update algorithms reported in this thesis assume that the given

soft evidential findings are consistent. This is a requirement for IPFP to converge.

It has been reported by Vomlel [13][14] and Peng and Ding [6] that when

constraints are inconsistent, IPFP will not converge but oscillate. How to detect if

a set of constraints are inconsistent and how to handle when given constraints are

inconsistent are important issues for further research.

6 Another interesting issue about uncertain evidence is the evidence accumulation

involving soft evidence. It is well known that virtual evidence, like hard evidence,

can accumulate with other types of evidence because it specifies how likely a

probabilistic statement is true regardless under what condition the statement is

made. Unlike virtual evidence, however, most people believe that the probability

distribution given in a soft evidence should not be changed by other observations

after it is applied because a soft evidence is a certain finding about the evidence

variable’s distribution. However, this invariance is not absolute, in some

situations soft evidences should be changed by other evidences. Possible

situations include what-if analysis and decision supporting systems (e.g.,

influence diagram) where hypothetical hard evidences or uncertain evidences

may be posted after observed evidences have been entered.

With the research in these areas we hope to make SLBN a step closer to the practical

applications.

 130

9 References and Bibliography

[1] Ash, R.B. 1970. Basic Probability Theory. John Wiley & Sons, Inc.

[2] Bloemeke, M. 1998. Agent Encapsulated Bayesian Networks. PhD thesis,

Department of Computer Science, University of South Carolina.

[3] Bloemeke, M. 2002. Agent-Encapsulated Bayesian Networks and The Rumor

Problem. Technical Reports, TR 2002-006, Depart of Computer Science,

University of South Carolina.

[4] Bock, H. H. 1989. A Conditional Iterative Proportional Fitting (CIPF) Algorithm

with Applications in the Statistical Analysis of Discrete Spatial Data. Bull. ISI,

Contributed Papers of 47th Session in Paris, 1: 141-142.

[5] Chan, H. and Darwiche, A.; 2003. Revisiting the Problem of Belief Revision with

Uncertain Evidence, in Proceeding of 18th International Joint Conference on

Artificial Intelligence.

[6] Csisz'ar, I. 1975. I­divergence geometry of probability distributions and

minimization problems. Ann. Prob., 3(1):146--158.

[7] Cooper, G. 1990. The Computational Complexity of Probabilistic Inference Using

Bayesian Belief Network. In Artificial Intelligence, 42: 393-347.

[8] Costa, P.; Laskey, K. B.; and Laskey K. J.; 2005. PR-OWL: A Bayesian

Framework for the Semantic Web. In Proceedings of the first workshop on

Uncertainty reasoning for the Semantic Web, Galway, Ireland.

131

[9] Cramer, E. 2000. Probability Measures with Given Marginals and Conditionals:

I­projections and Conditional Iterative Proportional Fitting, Statistics and

Decisions, vol. 18, pp. 311-329.

[10] Deming, W.; Stephan, F. 1940. On a Least Square Adjustment of a Sampled

Frequency Table when the Expected Marginal Totals are Known, Ann. Math.

Statist. 11, pp. 427-444.

[11] Ding, Z.; Peng, Y.; Pan, R. 2004. A Bayesian Approach to Uncertainty Modeling

in OWL Ontology. In Proceedings of 2004 International Conference on Advances

in Intelligent Systems - Theory and Applications (AISTA2004).

[12] Ding, Z.; Peng, Y.; and Pan, R.; 2005. BayesOWL: Uncertainty Modeling in

Semantic Web Ontologies. In Soft Computing in Ontologies and Semantic Web,

Springer-Verlag.

[13] Doan, A.; Madhavan, J.; Domingos, P.; and Halevy, A. 2004. Ontology Matching:

A Machine Learning Approach. Handbook on Ontologies in Information Systems,

S. Staab and R. Studer (eds.), Springer-Velag, 2004. Invited paper. P397-416.

[14] Dou, D.; McDermott, D.; Qi, P. 2002. Ontology Translation by Ontology Merging

and Automated Reasoning. In Proc. of EKAW Workshop on Ontologies for

Multi-Agent Systems.

[15] Fukushige, Y. October 2004. Representing Probabilistic Knowledge in the

Semantic Web. Position paper for the W3C Workshop on Semantic Web for Life

Sciences. Cambridge, MA, USA.

132

[16] Grove A.; Halpern, J. 1997. Probability update: Conditioning vs. cross­entropy. In

Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial

Intelligence (UAI­97), pages 208--214, Providence, RI.

[17] Holi, M.; Hyvönen, E. 2004. Probabilistic Information Retrieval Based on

Conceptual Overlap in Semantic Web Ontologies, in Proceedings of the 11th

Finnish AI Conference, Web Intelligence, vol. 2, Finnish AI Society, Finland.

[18] Jeffery, R. 1983. The logic of Decisions 2nd Edition, University of Chicago Press.

[19] Jensen F. 1994. An Introduction to Bayesian Networks. Aalborg University,

February.

[20] Kim, Y.; Valtorta M. 2004. A Prototypical System for Soft Evidential Update.

Applied Intelligence, 21, 1 (July-August 2004), 81-97.

[21] Koller, D.; Pfeffer, A. 1997. Object-oriented Bayesian networks. In Proceedings

of the 13th Annual Conference on Uncertainty in AI (UAI), Providence, Rhode

Island, pages 302— 313.

[22] Kruithof, R. Telefoonverkeersrekening, 1937. De Ingenieur 52, E15-E25.

[23] Kyburg, H.E. 1987. Bayesian and non­Bayesian evidential updating. Artificial

Intelligence, 31:271--293.

[24] Lacher, M.; and Groh, G. 2001. Facilitating the Exchange of Explicit Knowledge

through Ontology Mappings. In Proceedings of the 14th International FLAIRS

Conference. Key West, FL, USA.

[25] Laskey, K.B.; Mahoney, S.M; Wright, E. 2001. Hypothesis management in

situation-specific network construction. In Proceeding of the seventeenth Annual

Conference on Uncertainty in Artificial intelligence (UAI-01), pages 301-309.

133

[26] Lauritzen, S.L.; Spiegelhalter, D.J. 1988. Local Computation with Probabilities in

Graphic Structures and Their Applications in Expert Systems. In J. Royal

Statistical Soc. Series B,50(2): 157-224.

[27] Mitra, P.; Noy, N. F.; and Jaiswal, A. R. 2004. OMEN: A Probabilistic Ontology

Mapping Tool. In Workshop on Meaning Coordination and Negotiation at the

Third International Conference on the Semantic Web (ISWC-2004). Hisroshima,

Japan.

[28] Murphy, K.; Weiss, Y.; Jordan, M. 1999. Loopy belief propagation for

approximate inference: an empirical study, UAI.

[29] Neapolitan, R.E. 1990. Probabilistic Reasoning in Expert Systems: Theory and

Algorithms. John Wiley and Sons, New York, NY.

[30] Noy, N. F.; and Musen, M. A.; 2000. PROMPT: Algorithm and Tool for

Automated ontology Merging and Alignment. In Proceedings of the Seventeenth

National Conference on Artificial Intelligence (AAAI 2000), Austin, TX.

[31] Noy, N. 2004. Semantic integration: A survey of ontology-based approaches.

SIGMOD Record.

[32] Paris J.; Vencovska, A. 1992. A method for updating that justifies minimum cross

entropy. International Journal of Approximate Reasoning, 7:1--18.

[33] Pearl, J. 1986. Fusion, Propagation, and Structuring in Belief Networks. In

Artificial Intelligence, 29: 241-248.

[34] Pearl, J. 1987. Evidential Reasoning Using Stochastic Simulation of Causal

Models. In Artificial Intelligence, 32: 245-257.

134

[35] Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufman, San Mateo, CA.

[36] Pearl, J. 1990. Jeffery’s rule, passage of experience, and neo-Bayesianism. In H.E.

et al. Kyburg, Jr., editor, Knowledge Representation and Defeasible Reasoning,

pages 245-265. Kluwer Academic Publishers.

[37] Peng, Y. and Ding Z.; 2005. Modifying Bayesian Networks by Probability

Constraints, in Proceedings of 21st Conference on Uncertainty in Artificial

Intelligence, Edinburgh, Scotland.

[38] Prasad, S., Peng, Y., and Finin, T. 2002. A Tool For Mapping Between Two

Ontologies, International Semantic Web Conference (ISWC02), (poster), Sardinia,

Italy.

[39] Rijsbergen, V. 1979. Information Retrieval. London:Butterworths, 2nd Edition.

[40] Valtorta, M.; Kim, Y.; Vomlel, J. 2002. Soft evidential update for probabilistic

multiagent systems, International Journal Approximate Reasoning 29(1) 71-106.

[41] Vomlel J. 1999. Methods of Probabilistic Knowledge Integration. PhD thesis,

Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical

University.

[42] Xiang Y.; Poole D.; M. P. Beddoes. 1993. Multiply Sectioned Bayesian Networks

and Junction Forests for Large Knowledge Based Systems, Computational

Intelligence, Vol.9, No.2, 171-220.

[43] Xiang, Y.; Lesser, V. 2000. Justifying multiply sectioned Bayesian networks. In

Proceedings of the Fourth International Conference on Multi-Agent Systems

(ICMAS-2000), Boston, MA.

135

[44] Xiang, Y. 2002. Probabilistic Reasoning in Multiagent Systems: A Graphical

Models Approach. Cambridge University Press.

[45] http://www.auai.org/ Association for Uncertainty in Artificial Intelligence

Homepage.

[46] http://www.w3.org/2001/sw/ Semantic Web Homepage.

[47] http://www.w3.org/RDF/ W3C RDF Homepage.

[48] http://www.w3.org/TR/rdf-syntax-grammar/ RDF/XML Syntax Specification

[49] http://www.w3.org/TR/rdf-mt/ RDF Semantics

[50] http://www.w3.org/TR/rdf-schema/ W3C RDF Schema Specification

[51] http://cs-www.cs.yale.edu/homes/dvm/daml/ Yale OntoMerge Homepage, 2002.

[52] http://www.w3.org/TR/owl-ref/ OWL Web Ontology Language Reference

[53] http://jena.sourceforge.net Jena Homepage

[54] http://www.cs.yale.edu/homes/dvm/daml/pddl_daml_translator1.html PDDAML

Homepage

[55] http://www.ksl.stanford.edu/software/JTP/ SRI/KSL JTP Homepage

[56] http://www-2.cs.cmu.edu/~mccallum/bow/ Bow Toolkit Homepage

