

Learning the Semantic Meaning of a Concept from the Web

By Yang Yu

Thesis submitted to the
Graduate School of the University of Maryland, Baltimore County

in partial fulfillment of the requirements for the degree of
Master of Science

2006

ABSTRACT

Title of Thesis: Learning the Semantic Meaning of a Concept from the Web

Yang Yu, Master of Science, 2006

Thesis directed by: Yun Peng

Professor

Department of Computer Science and Electrical Engineering,

University of Maryland Baltimore County

Many researchers have applied text classification techniques to the ontology mapping

problem. The mapping results in these researches heavily depend on the availability of

highly relevant text exemplars associated with individual concepts. However, manual

preparation of exemplars is costly. In this work, we propose to automatically collect text

exemplars by downloading and processing web pages listed in the search results obtained

by querying a search engine. Search queries are formed for each concept according to the

semantic information given in the ontology. We have implemented a prototype system

and conducted a series of experiments. Given two ontologies, the process from forming

search queries to calculating conditional probability of two concepts is fully automated.

We assessed the effectiveness of our approach by comparing the obtained conditional

probabilities in these experiments with human expectations. Our main contribution is that

we explored the possibilities of utilizing web information for text classification based

ontology mapping and made several valuable discoveries on its usefulness for future

research.

 Acknowledgments

I would like to give my sincere thanks to my thesis advisor, Dr. Yun Peng. Without his

directions and encouragements, this work would not be possible.

I also would like to express my gratitude to professors in the department for their

excellent teaching. Knowledge and skills I gained from Knowledge Representation, Basic

Research Methods, Introduction to Artificial Intelligence and many other courses helped

a lot at various steps of this research.

Finally, I would like to thank my family and friends. Their love and supports keep me

going forward.

CONTENTS

LIST OF FIGURES .. 3

LIST OF TABLES.. 4

1. Introduction... 5

2. Background and Motivation ... 6

 ... 62.1 The semantic web and ontology

 .. 102.2 Ontology languages

 ... 102.2.1 RDF and N3

 .. 102.2.2 OWL

 ... 112.2.3 KIF

 ... 112.3 Some large ontologies

 .. 122.4 Ontology mapping

 ... 132.4.1 Ontology mapping definition

 ... 132.4.2 Approaches for ontology mapping

 ... 162.5 Our proposal

3. System Design .. 17

 .. 193.1. The parser

 ... 233.2. The retriever

 ... 243.3. The processor

 ... 253.4. Bayes rule and the naïve Bayes text classifier

 .. 253.4.1 Bayes rule

 ... 263.4.2 Naïve Bayes text classifier

 .. 293.5. The model builder

 - 1 - 1

 .. 313.6. The calculator

4. Experiments and results .. 34

 ... 354.1. Results for weapons ontologies

 ... 444.2. Results for LIVING_THINGS ontology

5. Discussions ... 51

 .. 525.1 A web page is not a sample of a concept

 ... 525.2 Popularity does not equal relevancy

 .. 535.3 Weight cannot be specified for words in a search query

 ... 545.4 Relevancy does not equal to similarity

6. Related Work .. 56

7. Future Work .. 57

8. Conclusion .. 59

References... 59

 - 2 - 2

LIST OF FIGURES

Figure 1 Ontology for CommercialJet in OWL.. 9

Figure 2 Ontology for CommercialJet viewed as a concept tree.. 9

Figure 3 System components overview Part I .. 18

Figure 4 System components overview Part II ... 19

Figure 5 Living_Things ontology in OWL format ... 21

Figure 6 Structure of LIVING_THINGS ontology .. 22

Figure 7 General Algorithm for a naïve Bayes classifier ... 28

Figure 8 Using exemplars from complement classes to build model 31

Figure 9 Classes in WeaponsB.n3 that are not in WeaponsA.n3 (I) 36

Figure 10 Classes in WeaponsB.n3 that are not in WeaponsA.n3 (II) 37

Figure 11 Comparison of different processing methods... 41

Figure 12 Experiment (2) with LIVING_THINGS ontology... 45

Figure 13 Relation of desired exemplars with different parts of search results 55

LIST OF TABLES

Table 1 A set of queries generated from LIVING_THIGNS ontology 22

Table 2 Example classification results.. 32

Table 3 Conditional probability given APC calculated by the calculator 34

Table 4 Classes and their desired mappings ... 37

Table 5 Results comparison by showing classes with highest conditional probability.... 38

Table 6 Comparison between different numbers of exemplars (whole)........................... 42

Table 7 Comparison between different numbers of exemplars (keyword sentence)....... 43

Table 8 Comparison of mapping accuracy of different groups of experiments 44

Table 9 Results of experiment (1)... 46

Table 10 Results of Experiment (2) with 200 exemplars ... 46

Table 11 Results with additional classes (200 exemplars each class) 47

Table 12 Results by applying clustering on exemplars .. 48

Table 13 Comparison between different numbers of exemplars (keyword sentence)..... 49

Table 14 Queries augmented with class properties .. 50

Table 15 Experiment (2) Queries augmented with class properties 50

Table 16 Experiment (2) Queries augmented with class properties 51

 - 4 - 4

1. Introduction

The semantic web is "an extension of the current web” [BLHL01], where information

is marked up by ontology languages such as RDF and OWL so that it can be better proc-

essed by programs. However, it is not realistic to assume a single ontology shared by

everyone. Instead, different organizations may have different ontologies for the same

domain, and different ontology designers may use different terms for the same or similar

concepts, reflecting their own perceptions and conceptualizations of the domain. For ex-

ample, a course to teach neural networks may be called “Introduction to Neural Net-

works” in one university’s course ontology and be called “Introduction to Connectionist

Models” in the other’s. Understanding these two courses actually teaching similar mate-

rials is not a problem to a computer science professor because in the professor’s knowl-

edge base these two terms are very similar, i.e., they have the same or very similar mean-

ing or semantics. However, when programs based on one ontology try to exchange in-

formation with programs based on another, problems will happen. This so-called interop-

erability problem has been known for a long time in software integration, and becomes

more acute in the semantic web [WR04].

One of the approaches to address this interoperability problem is to map concepts de-

fined in one ontology to semantically identical or similar concepts in another ontology.

Text classification is a very powerful machine learning technique some have suggested

for this purpose [DMDDH02, SPF02]. However, its success is highly dependent on the

availability of text documents that are exemplars of individual concepts in the ontologies.

Manually preparing a good number of highly relevant exemplars for hundreds of con-

cepts requires great efforts and time from domain experts, greatly reducing the attractive-

 - 5 - 5

ness of this approach, especially when dealing with large ontologies and in applications

that require quick responses. We propose to automatically retrieve exemplars from the

web, the largest information source available. An automated prototype system has been

built based on this idea which allows us to experiment with different parameters and

methods in each step of this approach. A series of experiments have shown encouraging

results.

The rest of the paper is organized as follows. Section 2 provides background and mo-

tives of this work; Section 3 presents the technical details of our approach and the proto-

type system; Section 4 shows the experiments and results; Section 5 discusses some limi-

tations of this approach and issues we have observed; Section 6 compares with related

works; Section 7 suggests future works; and finally Section 8 gives conclusions of this

work.

2. Background and Motivation

 In this section, we first introduce the concepts of the semantic web and ontology.

Then we briefly explain the different languages used to develop ontology files and de-

scribe several large ontologies available. After this, we define the ontology mapping

problem and discuss different approaches to ontology mapping. At the end of this sec-

tion, we present the hypothesis our research is set to test.

2.1 The semantic web and ontology

The Internet has enabled us to do many things more efficiently, for example, finding

out the show time of a new movie being played at the theater nearest to our house, reserv-

ing a rental car at the lowest price at an airport of another city where we are going the

 - 6 - 6

next week, buying a book or a research paper on an interested topic that can be delivered

in the shortest amount of time, and many other useful things can be done in minutes be-

fore a computer. The web has provided us enough information and applications that make

all these amazing things possible. However, we, humans, are still the center of these

tasks. We still need to collect, compare, and analyze most of the information and make

important decisions during the process. Sometimes, the process can take a long time and

we are just wondering whether programs can do more and better for us.

They cannot. The information available on the WWW is meaningful only to us hu-

mans. We understand the relation between a movie and a theater. We understand the rela-

tion between a rental car and an airport. But to a general program, these are just strings

and it cannot do anything more with these strings if not specifically programmed. The

solution will be that either we make a lot of complicated specialized programs, each one

possessing some part of the information and being able to process them intelligently

enough for some specific purposes, for example, a search engine like Google, or we can

mark up the information available on the web, defining the relations between “strings”,

so that every program understanding the markup language can understand the informa-

tion in the same way and being able to process it more easily. We have built so many

complicated programs, yet they never catch up our needs. So a universally accessible and

machine-understandable web of information looks the way to go. This is the vision of the

Semantic Web [BLHL01] and one way to organize and markup information is to use on-

tologies defined in some common languages.

In computer science, an ontology is a set of concepts each of which can have individ-

ual members, descriptions of its own properties and relations with other concepts in the

 - 7 - 7

set. Everybody can develop an ontology to be used by programs and other people. For

example, Figure 1 shows a simple ontology defined in OWL based on [UM06]. Figure 2

shows the relations between the concepts of ontology. If a program is able to parse this

markup language, then from this ontology, the program can have the knowledge that

Boeing Jet is a kind of commercial jet and Boeing-747 is a kind of Boeing Jet by observ-

ing the SubClassOf property. If we define a “made-in” property that tells us where these

commercial jets are made, the class Boeing-Jet may have such a relation with another

class WA. If the ontology also has information or the program can find in some other on-

tologies that WA is the same as Washington State, and it is “a-part-of” USA, then these

pieces of information can be easily used to answer questions like “Find all types of jets

that are made in the USA”.

 - 8 - 8

Figure 1 Ontology for CommercialJet in OWL

Figure 2 Ontology for CommercialJet viewed as a concept tree

 - 9 - 9

By defining relations between concepts and organizing our knowledge using ontology

languages, we effectively build a web of concepts, a huge integrated database, where in-

formation can be easily shared among applications and more complicated reasoning can

be supported.

2.2 Ontology languages

 There are quite a few languages developed to encode our knowledge into ontology

files, most of which are based on XML. Here we briefly introduce some often used ones.

2.2.1 RDF and N3

 RDF (Resource Description Framework) is a framework recommended by W3C to be

used for metadata description and interchanging. Basically, a RDF file is formed by tri-

ples, which are statements on available resources in subject-predicate-object format. Sub-

ject is some resource, identified by a URI. Predicate is a property of the resource and ob-

ject is the value of the property. N3, or notation 3 is a language designed based on RDF,

which is more compact and human readable. Specifications about RDF and N3 can be

found at W3C’s website.

2.2.2 OWL

 OWL (Web Ontology Language) is the standard language recommended by W3C to

publish ontologies on the web. It is derived from DAML+OIL, an early version of ontol-

ogy language based on RDF, description logics and frame languages. OWL provides a

richer vocabulary, more relations between concepts and supports more complex reason-

ing. For example, restricted cardinality, class equality and intersection can be expressed

using OWL. OWL has three variations, OWL Lite, OWL DL and OWL Full, in an in-

creasing order of complexity. Specification of OWL can be found at the W3C website.

 - 10 - 10

Ontologies used in this thesis are in OWL Lite. If relations between classes defined in an

ontology file only contain subClassOf, we can view the ontology as a taxonomy and in

this thesis, we sometimes refer to it as a concept tree.

2.2.3 KIF

 KIF (Knowledge Interchange Format) [kif] was originally designed as an interchange

format, as it is named, to be processed by computers as a representation for first-order

logic. However, more and more ontology developers use it to author ontology files be-

cause its easiness to be processed. For example, the Food and Agriculture Organization

of the United Nations organized its knowledge and vocabulary in several agriculture re-

lated domains into ontology files coded in several formats, one of which is KIF. A variant

of KIF, SUO-KIF is used to write ontology files in SUMO [NP03]

2.3 Some large ontologies

 With more and more people agreeing on the importance and inevitability of the se-

mantic web, there are more and more projects started to develop ontologies and tools to

write, publish, and use ontologies. Here we introduce a few large ontologies, some of

which we will mention again in the later part of this thesis.

 OpenCyc [RL02] probably is the largest human knowledge base that has been devel-

oped since the 80s by the Cycorp. The latest version of OpenCyc has 47,000 concepts

forming an upper ontology covering (almost) all domains of “human consensus reality”.

There are also 306,000 assertions made about these concepts. Inference engine and

knowledge base browser are also provided for OpenCyc. The knowledge base is coded in

a logic programming language called CycL. There are translators from CycL to Lisp and

C.

 - 11 - 11

 WordNet [wn] is a “lexical reference system” only for English words developed at

Princeton University. It is formed by synonym sets of nouns, verbs, adjective and ad-

verbs. These synonym sets can have relations with one another. According to [NP03],

“there are 66,054 noun synsets, 17,944 adjective synsets, 3,064 adverb synsets, and

12,156 verb synsets”.

 SUMO (Suggested Upper Merged Ontology) [sumo] is developed by Teknowledge

Corporation using SUO-KIF, a language similar to KIF, to define general-purpose con-

cepts, which will be a foundation for more specific ontologies for different domains. Ac-

cording to [NP03], SUMO “has been proposed as a starter document” for IEEE’s SUO

(Suggested Upper Ontology) working group. Currently it has ontologies for domains in-

cluding computing services, finance, economy, terrorism, WMD, government, geogra-

phy, and transportation, containing around 1,000 terms and 4,000 assertions. With

SUMO, Teknowledge Corporation also provides MILO (MId Level Ontology), an ontol-

ogy positioned between SUMO and detailed domain ontologies as a bridge.

2.4 Ontology mapping

Since the start of the semantic web effort, many ontologies have been developed by

many organizations and individuals. For example, according to Swoogle [FD05] a se-

mantic web search and metadata engine, as of July 2006 there are approximately 10,000

ontology documents in the web. A program that understands one ontology does not nec-

essarily understand web pages whose semantics are specified using concepts defined in

other ontologies. It is hard to centralize the ontology development effort toward a unified

ontology for all people, and it is also a fact that people can use different terms for the

same concept and that people can have different views on knowledge of the same do-

 - 12 - 12

main, so different ontologies can be created for the same domain and interoperability

problem can arise [WR04]. For the semantic web to work, it is imperative to relate or

map concepts between such ontologies.

2.4.1 Ontology mapping definition

 The problem we are trying to solve in this thesis is defined as follows:

 Given an ontology OntoA and another ontology OntoB both defined for the same do-

main (or their domains overlap), we would like to be able to know the relation between

any given concept Ci in OntoA and any given concept Cj in OntoB. If there are m concepts

in OntoA and n concepts in OntoB, then we would like to find a function f, which returns

a relation r,

r = f (Ci, Cj) where i=1, …, n and j=1, …, m;

r = {equivalent, subClassOf, superClassof, complement, overlapped, other}

 Completely and neatly solve the ontology mapping problem defined above is diffi-

cult. In most cases, we just want to know if Cj in OntoB has any equivalent correspond-

ing class Ci defined in OntoA. This is the easiest place to start solving the whole problem,

and also where most researches, including this one, have put their efforts on.

2.4.2 Approaches for ontology mapping

 Different approaches to ontology mapping have been developed. Manual mappings

between some large ontologies have been tried in recent years. In [RL02], researchers

from OpenCyc integrated knowledge from resources like SENSUS, FIPS (Federal Infor-

mation Processing Standards), pharmaceutical thesauri, WordNet, MeSH (Medical Sub-

ject Headings), CIA World Factbook, etc. into OpenCyc's knowledge base. Knowledge

workers, such as those who are trained to develop OpenCyc ontologies, and domain ex-

 - 13 - 13

perts, people who have expertise knowledge of a given domain, worked together for this

task. To make the work more efficient, a dialogue based tool was developed to work with

the domain experts, so that in some cases they could just input knowledge and answer

questions prompted by the program, without having to know how to convert their input

into OpenCyc's ontology language. In [NP03], mapping the noun synsets from WordNet

to SUMO was carried out. Different relations between concepts are marked during the

mapping process. For example, a noun from SUMO will be added at the end of the corre-

sponding WordNet entry with a prefixed sign. Manual mapping like these is accurate and

it can be saved for future use. The problem is that the size of ontologies can be very

large and ontologies can keep growing, which requests a huge amount of continuous hu-

man efforts. Moreover, this approach is also restricted by the availability of domain ex-

perts’ knowledge and its slow response time. More and more researchers are looking for

ways to map ontologies semi-automatically or automatically.

String matching of concept names in two ontologies [Li04] is an effective alternative.

Large amount of information can be processed very quickly and with some degree of ac-

curacy. For example, in [Li04], the first step is to do a “whole term matching”. The

terms used in both ontologies are changed to lowercase and are used for string

comparison. After the first step, a “word constituent matching” is performed for concepts

that do not find a match yet. A term, which is a combination of several English words, for

example, ArtificialIntelligence, ComputerScience, TeachingAssistant, is broken into

separate words whenever a capital letter is encountered. Stop words like “the”, “a”, “in”,

etc. are filtered out. The remaining words are processed morphologically and are used as

inputs to string matching. Terms such as “written-by” and “wrote”, “meetingPlace” and

 - 14 - 14

to string matching. Terms such as “written-by” and “wrote”, “meetingPlace” and

“PlaceOfMeeting” can be matched with one another in this way.

The next step is “Synset matching”, where WordNet [wn] is used. For each term in an

ontology file that do not have a match yet, if its constituent words are in WordNet, then

each of these words must belong to some synsets. Synset index numbers are recorded for

each term. Two terms from two different ontologies are matched if they have the most

synset index numbers in common. If by these three steps, a mapping still cannot be found

for a term and this term has synsets in WordNet, corresponding SUMO mapping of its

synset is searched. Using this SUMO mapping as a bridge, possible mapping to terms in

the target ontology can be found. This requires the target term also has associated syn-

sets, which has mappings in SUMO. Approaches like this usually involve complicated

lexical analysis and a complete dictionary such as WordNet has to be consulted to make a

correct mapping. Also, there are some situations that the string matching approach will

not work at all, because one word can have different semantic meanings or word senses

which are represented by different classes, possibly in different ontologies. For example,

the word notebook can either be a kind of computer or be a kind of office supplies. A tool

based on the string matching approach would map these two different classes as equiva-

lent to one another.

 Many researchers choose machine learning methods to solve the problem, especially

text classification techniques [MG01, DMDDH02, SPF02], because the semantic mean-

ing of a concept is contained in an exemplar that uses the concept in a desired context.

Usually, such text exemplars for each concept or class in a given ontology (OntoA) are

manually prepared. Then a text classifier is trained using these data. To map a concept C

 - 15 - 15

defined in another ontology (OntoB) to some concept in OntoA, exemplars for C need to

be collected and classified into the classifier of OntoA, which itself was built from exem-

plars of its concept. Based on the initial classification results, algorithms such as [LG01]

and [DMDDH02] can be used to carry out the further steps of ontology mapping. Text

classification based ontology mapping is more efficient than manual mapping, and more

powerful than string matching, because semantic meanings of apparently different strings

can be analyzed by processing information contained in the provided exemplars. Here,

the existence of exemplars for each concept and their relevancy to the concept they repre-

sent are the key factors to the effectiveness of this approach. However, finding sufficient

quantity of high quality exemplars manually is time-consuming, and is thus the limiting

factor of this approach.

2.5 Our proposal

The WWW is the richest information resource available anywhere in the world. There

are tens of billions of web pages available on the WWW. There must be a sufficient

number of documents on the WWW that explain a concept, describe the usage of a con-

cept, or use the desired semantic meaning of a concept in some context. If there is a way

to find such documents automatically and quickly, the limiting factor of the text classifi-

cation based approach will be gone and we will be in a better position to solve the ontol-

ogy mapping problem.

To achieve this goal, we can choose to use a search engine as part of the solution. A

search engine is a killer application of the Internet. It indexes tens of billions of web

pages accessible on the web and provides links of the most relevant ones to a query sub-

mitted by a user. Of course, a search engine would never know whether a document is

 - 16 - 16

relevant or not regarding a search query, only a human user can judge that. A search en-

gine can only make its best guesses based on some very complicated algorithms. How-

ever, a good search engine would offer us the best combination of speed and search

qualities verified by hundreds of millions human users, with the most relevant documents

to a search query often appearing in the first few pages of its search results. Based on vir-

tually unlimited text information offered by the Internet and the matured services pro-

vided by modern search engines, we propose the following hypothesis:

By using a concept defined in an ontology to form a search query and collecting web

documents related to the concept from the WWW, we can get a good quantity of useable

text exemplars.

To prove this hypothesis, we designed a tool to retrieve documents from the web with

the help of a search engine and tried a number of different ways to process the documents

downloaded before using them for text classification. We tested our tool by actually per-

forming some preliminary ontology mapping experiments with small scale ontologies.

3. System Design

 When describing the components of the system, we use OntoA to refer to the ontology

in which we seek a mapping for a foreign concept and use OntoB to refer to the ontology

which provides the semantic definition of the foreign concept. The system has the follow-

ing main components:

1. A parser to parse ontology files in OWL format to form search queries.

2. A retriever to drive a web search engine with the queries generated by the parser

and to retrieve a specified number of web pages based on the search results.

 - 17 - 17

3. A processor to process the raw HTML documents obtained from the retriever to

construct text files as exemplars for concepts in the ontologies.

4. A model builder to build a probabilistic model from the processed text files asso-

ciated with OntoA by calling a text classification software.

5. A calculator to feed the text files produced by the processor for concepts in On-

toB to the text classifier built for OntoA, collects classification outputs and calcu-

lates initial mapping results as conditional probabilities.

We chose Google as our search engine and Rainbow [MC96] for our text classifica-

tion. The structure of the system is shown below. Figure 3 shows the process from gener-

ating queries to obtaining text exemplars. Figure 4 shows the process from building a

probabilistic feature model to calculating conditional probabilities for ontology mapping.

Details of different components are explained in later sections.

Ontology A

Parser

Processor

Search Engine

HTML Docs

Queries

Text Files

Links to Web Pages

WWW

Retriever

Retriever

Figure 3 System components overview Part I

 - 18 - 18

Ontology A Ontology BModel Builder

Mapping Results

Text Files (B)

CalculatorFeature Model

Text Files (A)

Rainbow

Rainbow

Figure 4 System components overview Part II

3.1. The parser

 Given an ontology file, we parse the file to generate search queries for Google. To

obtain better results, the query should contain more semantic information than just a class

name. Because a word may have multiple senses or meanings, a query consisting of only

the words of a concept’s name may return web pages based on a more popular meaning

of the word, which sometimes is not the particular meaning intended for the concept in

the ontology. For example, in an ontology for food with a root class called “food”, we

may have a concept “apple”, which is a subclass of “fruit”. If we only use “apple” as the

keyword, documents showing how to make an apple pie and documents showing how to

use an iPod may both be returned with more documents for iPod due to its popularity on

the web. Apparently, the documents using apple for its meaning in computer and enter-

 - 19 - 19

tainment fields are irrelevant to a subclass of fruit. To avoid this, when forming a query,

we use all the terms on the path from root class to the class in question together as a

query to send to the search engine. In the apple example, the query would be

“food+fruit+apple” instead of “apple” itself alone. By doing so, the number of irrelevant

documents returned can be greatly reduced. This kind of “word sense disambiguation” by

adding additional semantically relevant terms into the search queries can be further ex-

tended to include the concept’s properties, its subclasses, instances, and other semanti-

cally related items available in the ontology definition file. For our experiments we de-

veloped a simple LIVING_THINGS ontology for the biology domain. Figure 5 is the on-

tology in OWL format. The concept tree in Figure 6 shows relations between the con-

cepts and Table 1 lists the queries generated for each class defined in the LIV-

ING_THINGS ontology.

 - 20 - 20

Figure 5 Living_Things ontology in OWL format

 - 21 - 21

Figure 6 Structure of LIVING_THINGS ontology

Concepts Queries
liv-

ing+things living+things

Animal living+things+animal

Plant living+things+plant

Cat living+things+animal+cat

Human living+things+animal+human

Man living+things+animal+human+man

woman living+things+animal+human+woman

Tree living+things+plant+tree

Grass living+things+plant+grass

Frutex living+things+plant+tree+Frutex

Arbor living+things+plant+tree+arbor

Table 1 A set of queries generated from LIVING_THIGNS ontology

 - 22 - 22

It needs to be noted that, as shown in some of our experiments, queries that include too

many terms of high specificity (e.g., some concepts in zoology or botany) may lead to

very few or even empty search results.

3.2. The retriever

 There are tens of billions documents available on the web. For a text classification

problem, usually only a few dozens to a few hundreds exemplars for each concept are

needed. For most of the experiments, we retrieved documents with the help of Google,

because it is the easiest one to be integrated into our system and it is generally considered

the best by human users, which makes us believe that its results are possibly the most

relevant to the query among publicly available search engines. Although Google pro-

vided a programming API to download web pages listed in search results, we still de-

cided to develop our own retriever program. This gives us the flexibility to experiment

with search engines other than Google (for example, Clusty.com, a search engine which

also clusters the search results [cl]) in some of our experiments.

 The retriever takes a file containing queries generated by the parser, initiates a con-

nection with a search engine, and sends a query in. Then it goes through the result pages

one by one and extracts URLs of web pages listed as search results on each page. URLs

of web pages listed as the search results can be identified by their special HTML coding

patterns, so advertisements and other URLs on each page that are not search results can

be escaped. After it collects a pre-specified number of URLs, it tries to download web

pages at these URLs. In the current prototype implementation, only URLs starting with

http:// and ending with .html, .htm or / are extracted because other file types, for example,

doc or pdf will be difficult for our current processor to process. Sometimes, the retriever

 - 23 - 23

cannot download a web page due to connection timeout or the web page being deleted

but still cached by the search engine. All the HTML files obtained through a query for a

particular class are saved in a directory using the query as the directory name and will be

used by the processor to generate exemplars for that class.

3.3. The processor

 Documents collected by the retriever are HTML files. They contain HTML tags, im-

ages, texts and script programs etc. These raw data have to be processed before being fed

into a text classifier. The processor will remove all HTML tags, image files, script pro-

grams, etc. Also removed are hyperlinks, which may contain some useful semantic in-

formation. For example, for the query “living+things+animal”, the document ranked

highest by Google is at http://www.fi.edu/tfi/units/life/classify/classify.html. Many ani-

mal names are represented using hyperlinks in this page. But more often a webpage will

contain a certain amount of links to other irrelevant pages and websites, for example,

online advertisements, other services and information provided by the hosting website

which are not related to the topic of the current page, etc. Since the retriever can easily

retrieve a huge amount of relevant documents from the web, we can afford to be more

selective in the process and do not have to worry about losing a very small amount of po-

tentially useful information when removing hyperlinks.

 After the above steps, what we have are a large number of pure text files for each

concept, contained in one directory per concept. The processor now has a optional step

for these files: keeping only the sentences where a word in the query appears and delete

all other sentences. Since not every part of the text file is necessarily relevant to the class

in question, this step may help remove irrelevant information and keep only the most

 - 24 - 24

closely relevant texts. Text files processed with and without this option are both used in

our experiments and the results are compared. The processor can also choose to keep

paragraphs, rather than sentences in which query words appear.

3.4. Bayes rule and the naïve Bayes text classifier

 There are quite a few text classification algorithms available for ontology mapping,

for example, naïve bayes, TF-IDF, and support vector machines, etc. We choose to use

naïve bayes text classification in our research because it is a simple algorithm and it

shows good performance in many evaluations [Mi97]. We also thought that it would give

an accurate value for the conditional probability for each class used to train the classifier,

given text exemplars of a new class.

3.4.2 Bayes rule

A naïve Bayes classifier is based on Bayes rule. Suppose we have event A and B in

our event space E, Bayes rule tells us that

P(A | B) * P(B) = P(B | A) * P(A) = P(A, B)

Where
• P(A) is the prior or marginal probability. It describes our belief that event A will

happen.

• P(B) is the prior probability of even B.

• P(A|B) is the conditional probability of A, given B. It describes our belief that if

event B happens, event A will happen.

• P(B|A) is the conditional probability of B, given A.

• P(A, B) is the joint probability of event A and event B. It describes our belief that

both event A and event B happen at the same time.

 - 25 - 25

Bayes rule explains the relations between prior probability, conditional probability and

joint probability. It is a powerful tool for probability reasoning. Especially when P(A | B)

is useful, but unknown and hard to obtain directly, we can use

P(A | B) = P(B | A) * P(A) / P(B)

to calculate P(A | B), the posterior probability of A, given B if other variables in Bayes

rule are available, which is precisely the situation of a text classification problem.

3.4.2 Naïve Bayes text classifier

 In a text classification problem, we need to decide among a set of mutually exclusive

categories or events C1, C2, … Cn, to which category a new document d should belong.

This can be determined by which category has the greatest posterior probability, given d,

i.e., maxi(P(Ci | d)| i = 1, …, n).

 P(Ci | d) is hard to calculate directly, so we apply Bayes’ rule here,

P(Ci | d) = P(d | Ci) * P(Ci) / P(d)

Since P(d), the prior probability of d, also called a normalizing constant, is the same for

every Ci, the classification is thus determined by

maxi(P(d | Ci) * P(Ci)), (1)

because what we are interested here is not the absolute values of the posteriors but their

ranking among all categories. Here P(Ci), the prior probability of category i, can be esti-

mated by the ratio of the number of exemplars for category Ci and the number of exem-

plars of all categories (if these exemplars are randomly drawn samples) or some other

methods [Mi97].

 Probability P(d | Ci) is more difficult to estimate. Naïve Bayes classification does it

based on word frequencies in each category for a predetermined set of words. Let d con-

 - 26 - 26

tain m distinct words d = {w1, …, wm}, assuming that whether a word appears in a cate-

gory is independent of other words in that category, then we have

 (2))|()|,...,()|(11 ij
m
jimi CwPCwwPCdP =Π==

 Probabilities P(wj | Ci) for all categories Ci and all words wj form the probabilistic

feature model for these categories, and they can be easily learned from exemplars associ-

ated with each Ci. Then the classifier, which combines the decision rule of (1) and the

model (2), is given as

 . (3)))|()((max 1 ij
m
jii CwPCP =Π

If needed, the actual posterior probability P(Ci | d) can then be computed by normal-

izing P(Ci , d) = P(d | Ci) * P(Ci) where P(d | Ci) is given by (2):

 ∑
=

j jj

ii
i CPCdP

CPCdPdCP
)()|(

)()|()|((4)

Note that the independence assumption in naïve Bayes classifier does not hold in gen-

eral. Despite of this, good performance is still achieved. Figure 7 taken from [Mi97]

shows the general algorithm of a naïve Bayes text classifier. Details of naïve Bayes clas-

sifiers can be found in [Mi97]

 - 27 - 27

Figure 7 General Algorithm for a naïve Bayes classifier

 We chose Rainbow as our text classifier. It is robust, fast and it implements naïve

Bayes text classification algorithm. However, because of the conditional independence

assumption, Rainbow and other naïve Bayes text classifiers tend to produce extreme val-

ues (0 and 1) for the conditional probabilities according to (4). The classifier will assign

1 or a value very close to 1 to a category that it a clear winner for the new document and

assign 0 or a value very close to 0 to other categories. This is certainly good enough if

 - 28 - 28

one only wants to get a right classification result. However, our purpose is to use the clas-

sifier to obtain the conditional probability of a concept in OntoA, given a new concept in

OntoB, and hope to use this value as a basis to measure the semantic similarity between

these two concepts. In other words, what we want are more accurate posteriors, not those

that are distorted by the independence assumption of naïve Bayes. For this purpose we

developed a calculator, given in Subsection 3.6 shortly, which uses Rainbow to calculate

this conditional probability (which can be any value between 0 and 1).

3.5. The model builder

 A naïve Bayes classifier requires the predefined categories C1, C2, …, Cn to be ex-

haustive regarding to the domain and mutually exclusive to one another, so that the prob-

ability results can be correctly sum to 1. In our system, classification categories are

closely related to ontology concept classes. Our model builder allows one to select con-

cept classes in different ways when forming these classification categories.

 For simplicity, this work only considers OWL ontology files that can be viewed as a

concept tree based on the subClassOf property. The leaf classes in such a tree are as-

sumed to be mutually exclusive to one another and exhaustive regarding to the root class.

By leaf classes, we mean those classes that do not have a subclass.

The default behavior of the model builder is to use all leaf classes in an ontology as

the classification categories, and each of which is associated with a set of text exemplars

generated from the processor module. Then the model builder calls Rainbow to build a

probabilistic feature model for these categories. This model will then be used by the cal-

culator to calculate the conditional probability of each leaf class, given exemplars of a

foreign class.

 - 29 - 29

 Besides the default behavior, the model builder has an option to build a model for

each class in OntoA except the root. Two exhaustive and mutually exclusive categories

A+ and A- are created by the model builder for class A in OntoA. A+ is associated with ex-

emplars for that class, and A- is associated with exemplars for the complement of that

class, which are taken from classes that are not A, not A’s ancestors nor A’s successors in

the ontology tree. The model builder then uses these two categories to build a model.

This option is not applicable to the root class, because the root does not have a comple-

ment in the context. For example, consider the class “CAT” in the LIVING_THINGS

ontology tree shown again in Figure 8. The exemplars for its complement “not CAT”

would include exemplars found for all classes except “CAT” and except its ancestors

“ANIMAL” and “LIVING_THINGS”, which are classes in shadow. The model builder

can also restrict the scope of complement in order to control the number of exemplars

when there are too many such shadowed classes. For example, we can restrict the com-

plement to be only with respect to the parent of the class in question. Then the category

of “not-CAT” can only has exemplars found for “HUMAN” and its descendents, shown

in Figure 8 as the shadowed classes in a circle. Alternatively, exemplars for these two

categories can be retrieved directly using two queires (e.g., “living+things+animal+cat”

and “living+things+animal+-cat” in the “CAT” example).

 - 30 - 30

LIVING_THINGS

ANIMAL PLANT

HUMAN

MAN

CAT

WOMAN

TREE

ARBOR

GRASS

FRUTEX

Figure 8 Using exemplars from complement classes to build model

3.6. The calculator

 The tasks for the calculator are to (1) feed exemplars of a concept C of OntoB one by

one to Rainbow, which performs classification using the model of OntoA, which has al-

ready been built by Rainbow, (2) keep record of the classification results for each exem-

plar, (3) calculate average results grouped by categories in the model as the conditional

probabilities, and (4) write a summary report. It can also perform some additional calcu-

lations like estimating mapping results for non-leaf classes.

 One way to obtain conditional probabilities is to concatenate all the exemplars of a

foreign concept into one piece and feed this to Rainbow. As we have discussed, because

of the naïve conditional independence assumption, Rainbow and text classifiers alike

tend to output extreme values such as 0 and 1. Such values are not true conditional prob-

 - 31 - 31

abilities that would be useful in advanced mapping algorithms such as the one in research

of [DPP05] and [DPPY05]. To avoid such extreme values, we treat each exemplar as a

sample of a foreign concept and feed the exemplars one by one to Rainbow and average

the results to obtain conditional probabilities. Here is an example to illustrate the way

how an average classification result as a conditional probability for a class is calculated.

For example, APC (Armored Personnel Carrier) is a class in WeaponsB.n3, an ontology

file describing some knowledge in the weapons domain. For the simplicity of our exam-

ple, suppose WeaponsA.n3, another ontology file for the same domain, has three classes

which do not have subclasses. They are TANK-VEHICLE, AIR-DEFENSE-GUN, and

SAUDI-NAVAL-MISSILE-CRAFT. We build a model using these three classes as clas-

sification categories. To calculate the conditional probabilities given class APC, we clas-

sify each exemplar of APC against the model. Table 2 below gives the classification re-

sults with 200 exemplars of APC.

Categories in
WeaponsA.n3

Num. of exemplars falling
in each category

TANK-VEHICLE 170

AIR-DEFENSE-GUN 20

SAUDI-NAVAL-MISSILE-CRAFT 10

Table 2 Example classification results

Then by taking the average, the conditional probability P(TANK-VEHICLE | APC) =

170 /200= 0.85, and similarly, 0.1 and 0.05 for the other two classes. Table 3 shows an

actual report that the calculator generated for one of the experiments with the WEAPONS

ontology when the classifier is trained with 63 leaf classes from WeaponsA.n3 and the

 - 32 - 32

foreign class is APC coming from WeaponsB.n3. Each class contains averagely 100

exemplars.

APC
SELF-PROPELLED-ARTILLERY 0.357180681
TANK-VEHICLE 0.277139274
ICBM 0.10423636
MRBM 0.080615147
TOWED-ARTILLERY 0.054724102
SUPPORT-VESSEL 0.023265054
PATROL-CRAFT 0.019570325
MOLOTOV-COCKTAIL 0.015032411
TORPEDO-CRAFT 0.013677696
SUPER-ETENDARD 0.009856519
MORTAR 0.00772997
AIR-DEFENSE-GUN 0.002997109
PATROL-COMBATANT 0.002846281
TORPEDO 0.002687264
TORNADO 0.002641316
HY-4-C-201-MISSILE 0.001898627
ANTI-RADAR-MISSILE 0.001868698
AIR-TO-AIR-MISSILE 0.00175536
MINE-WARFARE-VESSEL 0.001714463
TORPEDO-CRAFT 0.001589625
SS-N-22-SUNBURN-LCM 0.001560581
SILKWORM-MISSILE 0.001317753
SURFACE-TO-AIR-MISSILE 0.001144551
AIR-TO-SURFACE-MISSILE 0.000887746
NODONG-2-MISSILE 0.000882243
M-9-MISSILE 0.000863944
CSS2-MISSILE 0.000830065
AIRCRAFT-CARRIER 0.000721183
AMPHIBIOUS-VESSEL 0.000605727
MINE-WARFARE-VESSEL 0.000579844
CORVETTE 0.000521464
SMALL-ARMS 0.000520033
CHEMICAL-WEAPON 0.000518254
NUCLEAR-WEAPON 0.000495419
BIOLOGICAL-WEAPON 0.000493164

 - 33 - 33

CRUISER 0.000456558
AL-HUSSEIN-MISSILE 0.000453844
FRIGATE 0.000419076
SAUDI-NAVAL-MISSILE-CRAFT 0.000413961
AL-FATTAH-MISSILE 0.000384428
SCARAB-MISSILE 0.000347386
NODONG-1-MISSILE 0.000335111
ARTILLERY-SHELL 0.000309594
SILKWORM-MISSILE-MOD 0.000274119
AS-11-KILTER-ALCM 0.000268002
PRINCIPAL-SURFACE-COMBATANT 0.00021418
MACHINE-GUN 0.000211772
MOLOTOV-COCKTAIL 0.000187578
TRUCK-BOMB 0.000171675
AS-9-KYLE-ALCM 0.000156403
ARABIL-100-MISSILE 0.000111953
AL-HIJARAH-MISSILE 7.65E-05
OGHAB-MISSILE 7.12E-05
BADAR-2000 4.28E-05
YJ-2-C-802-LCM 3.86E-05
SCUDB-MISSILE 2.21E-05
SAQR-2000 2.17E-05
CSS8-MISSILE 1.69E-05
RGM-84A-HARPOON-SLCM 1.37E-05
SCUDC-MISSILE 1.11E-05
MUSHAK120-MISSILE 5.10E-07
TAMMOUZ1-MISSILE 5.10E-07
ZELZAL2-MISSILE 5.10E-07

Table 3 Conditional probability given APC calculated by the calculator

4. Experiments and results

 A several ontologies of different sizes have been used in many of our experiments. To

be concise, we only report here some representative experiments which involved two sets

of ontologies. The first set of experiments uses a small ontology whose structure is shown

 - 34 - 34

in Figure 6. We performed text classification between classes within this ontology and

also with some foreign concepts.

The second set of experiments uses two ontologies WeaponsA.n3 and WeaponsB.n3

taken from I3Con2004 [i3c]. Each of these two ontologies contains over 80 classes, not

large to be included in this thesis. Their complete descriptions can be found in [i3c].

 The system was implemented on a Linux system. The retriever is coded in Java and

the other components are done by Perl. Different components are glued together by shell

scripts. The entire process from parsing, generating queries, to collecting exemplars,

building models and calculating results is fully automated. The runtime of this process

depends on how many text files are to be processed. Usually the retriever takes most of

the time. It could take nearly 3 minutes to download 50 documents. However, this can be

improved by using advanced programming techniques such as multithreading and setting

the timeout for connections shorter. Processing documents, building model and calculat-

ing conditional probabilities is comparatively a lot faster. For a process involving 100

documents, it usually only takes a few seconds for the processor, the model builder and

the calculator to finish their jobs. Some utility tools, written in Perl, have also been de-

veloped for monitoring the process and post-processing the results, including sorting,

formatting for EXCEL, and updating the conditional probability of non-leaf classes in

OntoA based on the conditional probabilities of its leaf classes given a foreign concept,

etc.

4.1. Results for weapons ontologies

 When generating a query for a class in the default mode, the parser will use all the

classes from root class to the class in question. For weapons ontologies, because of their

 - 35 - 35

high specificity, we decided to let the parser generate shorter queries, using only the

names of the class itself and its parent class. This allows the search engine to return more

results instead of none or very few for some of the full-path queries.

 OntoA, WeaponsA.n3 has more than 60 leaf classes. The model builder would run in

default mode, which would build a model using these leaf classes as classification cate-

gories. The retriever collected on average 100 exemplars for each class. The processor

was executed in two different ways for comparison as discussed earlier: one is to use the

default mode to obtain pure text exemplars; the other is to only keep sentences in which

any of the search keywords appear as exemplars.

 There are 9 classes in WeaponsB.n3 that do not appear in WeaponsA.n3. We try to

find a mapping for each of them in WeaponsA.n3. The relations between these 9 classes

are shown in Figure 9 and Figure 10. The shadowed blocks are these classes that need to

be mapped.

WEAPON

CONVENTIONAL-
WEAPON

ARMORED-
COMBAT-VEHICLE

APCTANK-VEHICLE AIRCRAFT-CARRIER

MODERN-
NAVAL-SHIP

LIGHT-TANK LIGHT-
AIRCRAFT-CARRIER

Figure 9 Classes in WeaponsB.n3 that are not in WeaponsA.n3 (I)

 - 36 - 36

WEAPON

CONVENTIONAL-
WEAPON

MODERN-
NAVAL-SHIP

PATROL-
WARTERCRAFT

PATROL-BOATPATROL-BOAT-RIVER

WARPLANE

FIGTHER-PLANE

FIGHTER-
ATTACK-PLANE

SUPER-
ETENDARD-FIGHTER

Figure 10 Classes in WeaponsB.n3 that are not in WeaponsA.n3 (II)

 These 9 classes and their manually selected desired mapping leaf classes in Weap-

onsA.n3 are listed in Table 4.

Classes from WeaponsB.n3 Desired leaf class mappings

LIGHT-AIRCRAFT-CARRIER AIRCRAFT-CARRIER

APC TANK-VEHICLE

SUPER-ETENDARD-FIGHTER SUPER-ETENDARD

FIGHTER-ATTACK-PLANE SUPER-ETENDARD

PATROL-WATERCRAFT PATROL-CRAFT

PATROL-BOAT-RIVER PATROL-CRAFT

PATROL-BOAT PATROL-CRAFT

LIGHT-TANK TANK-VEHICLE

FIGHTER-PLANE SUPER-ETENDARD

 Table 4 Classes and their desired mappings

 - 37 - 37

 The conditional probabilities obtained are given in Table 5. Totally 9 times of map-

ping were performed for the 9 classes. For space limitation, here for each time of the

mapping, we only list the class that has the highest probability obtained instead of the

complete results for over 60 leaf classes. The first column contains classes from Weap-

onsB.n3, which we are seeking a mapping for. The second and the third columns are the

classes in WeaponsA.n3 with the highest conditional probability obtained by using a

whole file as an exemplar. The last two columns are results obtained by using only sen-

tences containing keywords as an exemplar. MRBM in column 4 stands for “Medium-

Range Ballistic Missiles”.

New Classes Whole file Prob
Sentences with
Keywords Prob

LIGHT-AIRCRAFT-
CARRIER

AIRCRAFT-
CARRIER 0.65

AIRCRAFT-
CARRIER 0.57

APC
SILKWORM-
MISSILE-MOD 0.46

SELF-
PROPELLED-
ARTILLERY 0.36

SUPER-ETENDARD-
FIGHTER

SILKWORM-
MISSILE-MOD 0.66

(BALLISTIC-
MISSILE)
MRBM 0.51

FIGHTER-ATTACK-
PLANE

SILKWORM-
MISSILE-MOD 0.83

(BALLISTIC-
MISSILE)
MRBM 0.38

PATROL-WATERCRAFT
SILKWORM-
MISSILE-MOD 0.28

PATROL-
CRAFT 0.52

PATROL-BOAT-RIVER
SILKWORM-
MISSILE-MOD 0.65

PATROL-
CRAFT 0.54

PATROL-BOAT SILKWORM- 0.51 PATROL- 0.66

 - 38 - 38

MISSILE-MOD CRAFT

LIGHT-TANK
SILKWORM-
MISSILE-MOD 0.56

TANK-
VEHICLE 0.3

FIGHTER-PLANE
AIRCRAFT-
CARRIER 0.49 MRBM 0.38

Table 5 Results comparison by showing classes with highest conditional probability

If we simply judge the accuracy of the mapping by looking at the class that has the high-

est conditional probability, it is easy to see that when using a whole processed web

document as an exemplar, only LIGHT-AIRCRAFT-CARRIER is correctly mapped. The

accuracy is 11%. However, when using only sentences containing keywords, the results

are improved significantly. The accuracy is 56% in this case. There are four classes,

APC, FIGHTER-PLANE, FIGHTER-ATTACK-PLANE, and SUPER-ETENDARD-

FIHTER, whose desired mapping classes does not have the highest conditional probabil-

ity.

 However, for class APC, its desired mapping class TANK-VEHICLE has the second

highest conditional probability, which is 0.28, very close to the highest one, SELF-

PROPELLED-ARTILLERY, which is also very related to TANK and APC. The fact

that SELF-PROPELLED-ARTILLERY is matched with APC on one hand shows us that

the exemplars collected and processed by the system preserve the semantic meaning of a

concept quite well. On the other hand it also shows us that though text classification

method and conditional probability can tell how related two concepts are, they cannot

necessarily tell if they are equivalent. Because that two concepts are closely related does

not mean that they are semantically identical or similar. This is a hard problem for our

future research.

 - 39 - 39

 For class SUPER-ETENDARD-FIGHTER, its desired mapping class SUPER-

ETENDARD also has the second highest conditional probability, which is 0.21. For the

other two FIGHTER classes, the results are not good. We think one reason is SUPER-

ETENDARD is the only leaf node in WeaponsA.n3 that represents a plane (violation of

exhaustive assumption for categories). It is possible that it is indeed not a good mapping

for some of the plane classes from WeaponsB.n3. For testing, we added a class WAR-

PLANE-OTHER under the class WARPLANE in WeaponsA.n3, containing exemplars

retrieved with a search query “WARPLANE+-SUPER+-ETENDARD” and performed

the classification process again. This time class FIGHTER-PLANE is mapped to its de-

sired class WARPLANE-OTHER with the highest conditional probability of 0.41. This

shows that adding a complement class sometimes helps when the given ontology is not a

complete model of the domain knowledge. Moreover, in this case, FIGHTER-PLANE is

a super class of the other two classes (FIGHTER-ATTACK-PLANE and SUPER-

ETENDARD-FIGHTER). The fact that a super class can be correctly mapped will make

the mapping of its sub classes easier.

 - 40 - 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LIG
HT-

AIR
CRAFT

-C
ARRIE

R
APC

SUPER-E
TE

NDARD-F
IG

HTE
R

FIG
HTE

R-A
TT

ACK-P
LA

NE

PATR
OL-W

ATE
RCRAFT

PATR
OL-B

OAT-
RIV

ER

PATR
OL-B

OAT

LIG
HT-

TA
NK

FIG
HTE

R-P
LA

NE

Whole
Sentences

Figure 11 Comparison of different processing methods

Figure 11 shows a further comparison of the two methods for the processor module.

The x-axis lists the classes from WeaponsB.n3 (the 1st column in Table 4). The y-axis

represents the conditional probability of a desired mapping class in WeaponsA.n3 (the

2nd column in Table 4). Except class APC, FIGHTER-PLANE and FIGHTER-ATTACK-

PLANE, all desired mappings are correctly identified by only keeping sentences

containing keywords in an exemplar. This processing method filters out noisy

information, which results in a better classification.

 In the search results returned by a search engine, the most relevant documents to a

query are always listed first. So the first 50 documents listed in the search results should

 - 41 - 41

be more relevant to the queries than the first 100. To verify this, we changed the number

of exemplars the system use for each class and did some comparison experiments. Table

6 is a comparison of results obtained from the system by using the first 50 exemplars and

the first 100 exemplars for each concept. These exemplars are obtained by processing

search results downloaded in that order with the processor in default mode. Table 7

shows the same comparison but the exemplars are processed at a sentence level.

New Classes
Group-whole-
50 Prob Group-whole-100 Prob

LIGHT-AIRCRAFT-
CARRIER

SILKWORM-
MISSILE-
MOD 0.60

AIRCRAFT-
CARRIER 0.65

APC

SILKWORM-
MISSILE-
MOD 0.65

SILKWORM-
MISSILE-MOD 0.46

SUPER-ETENDARD-
FIGHTER

SILKWORM-
MISSILE-
MOD 0.74

SILKWORM-
MISSILE-MOD 0.66

FIGHTER-ATTACK-
PLANE

SILKWORM-
MISSILE-
MOD 0.83

SILKWORM-
MISSILE-MOD 0.83

PATROL-WATERCRAFT

SILKWORM-
MISSILE-
MOD 0.64

SILKWORM-
MISSILE-MOD 0.28

PATROL-BOAT-RIVER

SILKWORM-
MISSILE-
MOD 0.89

SILKWORM-
MISSILE-MOD 0.65

PATROL-BOAT

SILKWORM-
MISSILE-
MOD 0.64

SILKWORM-
MISSILE-MOD 0.51

LIGHT-TANK

SILKWORM-
MISSILE-
MOD 0.62

SILKWORM-
MISSILE-MOD 0.56

FIGHTER-PLANE

SILKWORM-
MISSILE-
MOD 0.80

AIRCRAFT-
CARRIER 0.49

 Table 6 Comparison between different numbers of exemplars (whole)

 - 42 - 42

New Classes
Group-
sentence-50 Prob

Group-
sentence-100 Prob

LIGHT-AIRCRAFT-
CARRIER

AIRCRAFT-
CARRIER 0.44

AIRCRAFT-
CARRIER 0.57

APC
TANK-
VEHICLE 0.54

SELF-
PROPELLED-
ARTILLERY 0.36

SUPER-ETENDARD-
FIGHTER

HY-4-C-201-
MISSILE 0.4 MRBM 0.51

FIGHTER-ATTACK-
PLANE ICBM 0.19 MRBM 0.38

PATROL-WATERCRAFT
PATROL-
CRAFT 0.49

PATROL-
CRAFT 0.52

PATROL-BOAT-RIVER
PATROL-
CRAFT 0.36

PATROL-
CRAFT 0.54

PATROL-BOAT
PATROL-
CRAFT 0.37

PATROL-
CRAFT 0.66

LIGHT-TANK
TANK-
VEHICLE 0.59

TANK-
VEHICLE 0.3

FIGHTER-PLANE MRBM 0.38 MRBM 0.38

Table 7 Comparison between different numbers of exemplars (keyword sentence)

Here we use Group-whole-50 to refer to the group of experiments using a whole docu-

ment as an exemplar and only using the first 50 for each concept, and use Group-

sentence-50 to refer to the group of experiments using a document processed at a sen-

tence level as an exemplar and only using the first 50 for each concept. Group-whole-100

and Group-sentence-100 have similar meanings but different in number. The accuracy

comparison of the mappings of these four groups is shown in table 8.

 - 43 - 43

Groups of experiments

Mapping accuracy
judged by
desired class mapped

Group-whole-50 0%

Group-whole-100 11%

Group-sentence-50 67%

Group-sentence-100 56%

Table 8 Comparison of mapping accuracy of different groups of experiments

From the results, we can see that experiments using the first 50 exemplars for each class

have better results when the exemplars are processed at a sentence level. Class APC is

correctly mapped in Group-sentence-50 but not in Group-sentence-100. However, the

conditional probabilities obtained in Group-sentence-50 are averagely a lot lower than

those obtained in Group-sentence-100, which may have a negative effect on the further

calculations based on these conditional probabilities. So using less exemplars may not

always be a good choice.

4.2. Results for LIVING_THINGS ontology

 To gain further insights of this approach, we conducted the following additional ex-

periments using the LIVING_THINGS ontology shown in Figure 5.

(1) Obtain P(MAN | HUMAN) and P(WOMAN | HUMAN). We expect both posteriors

to be around 0.5

 - 44 - 44

(2) Given a new, foreign concept GIRL, build a model with classes ANIMAL and

PLANT as the set of mutually exclusive and exhaustive classification categories, and

perform classification. If class GIRL is mapped to class ANIMAL, then build a model

with Class HUMAN and CAT as the categories, and using GIRL exemplars classified

into ANIMAL class to perform the classification. Finally repeat the process at the

third level with class MAN and WOMAN to see how well GIRL can be mapped to

WOMAN. This process is shown in Figure 12.

LIVING_THINGS

ANIMAL PLANT

HUMAN

MAN

CAT

WOMAN

TREE

ARBOR

GRASS

FRUTEX

GIRL

Level1

Level2

Level3

Figure 12 Experiment (2) with LIVING_THINGS ontology

 The system performed these experiments automatically. Extensive experiments were

done with varying parameters of the system. For example, changing the number of

documents to be downloaded, adding different class properties to generate more informed

 - 45 - 45

queries, and using different modes of the processor module, etc. Table 9 shows results

comparison for experiment (1) with different numbers of exemplars used. The exemplars

are processed at a sentence level.

Conditional Probability

Using
first 50
exemplars

Using
first 100
exemplars

Using
first 200
exem-
plars

P(MAN | HUMAN) 0.75 0.58 0.62

P(WOMAN | HUMAN) 0.24 0.41 0.38

Table 9 Results of experiment (1)

Our expectation is that both P(MAN | HUMAN) and P(WOMAN | HUMAN) are to

be 0.5. The results show that using 100 exemplars performs the best among the three

groups. Also considering the experiments with WEAPONS ontology, we can see using

fewer exemplars (these are also ranked the highest) sometimes achieves good results,

sometimes not. We should not always depend on this single parameter. Table 10 shows

results for experiment (2) using 200 exemplars processed at a sentence level.

P(ANIMAL | GIRL) 0.76

P(PLANT | GIRL) 0.23

P(HUMAN | GIRL) 0.70

P(CAT | GIRL) 0.30

P(MAN | GIRL) 0

P(WOMAN | GIRL) 1

 Table 10 Results of Experiment (2) with 200 exemplars

 - 46 - 46

 What is disturbing is that Class CAT has a comparatively high conditional probability

given GIRL (P (CAT | GIRL) = 0.3). One reason for this anomaly is that words like hu-

man, man, woman and girl often appear in web pages associated with class CAT because

cats have such close relations with human beings (sometimes cat is even used to describe

a human). Manually inspecting the exemplars confirms this reason.

The “cat” problem shows that even though the parser generates an informed query and

the processor is able to further process exemplars at a sentence level, the exemplars may

still be far from perfect. This problem was further confirmed by an additional experiment

in which DOG (another domesticated animal) and PYCNOGONID (a kind of sea spider)

were added into the ontology as subclasses of ANIMAL. Most of the exemplars of GIRL

went to Dog, and none to PYCNOGONID as shown in Table 11.

P(DOG | GIRL) 0.56

P(CAT | GIRL) 0.01

P(HUMAN | GIRL) 0.43

P(PYCNOGONID | GIRL) 0

 Table 11 Results with additional classes (200 exemplars each class)

We conjecture that, although all exemplars for CAT or DOG taken as a whole are

closely related to GIRL, it is different at the level of individual exemplars, some are close

but others are not. The “cat and dog” problem can then be solved if we can separate ex-

emplars that truly reflect the intended semantics of CAT or DOG from those that are not.

As a first step, we have tried to perform clustering on exemplars of each class in the hope

that one of the clusters would contain those truly relevant exemplars.

 - 47 - 47

We have tried to replace Google as the retriever’s search engine by a clustering search

engine Clusty.com which automatically clusters search results based on some text clus-

tering algorithm. Then the largest cluster for each class returned by Clusty.com is used as

exemplars. Even though the exemplars are not processed at a sentence level, results are a

lot better regarding to P(CAT | GIRL) as shown in Table 12.

P(ANIMAL | GIRL) 0.83

P(PLANT | GIRL) 0.17

P(HUMAN | GIRL) 0.92

P(CAT | GIRL) 0.08

P(WOMAN | GIRL) 0.63

P(MAN | GIRL) 0.37

Table 12 Results by applying clustering on exemplars

We also tried to cluster exemplars obtained by Google with clustering package in

WEKA [weka]. When calculating P(HUMAN | GIRL) and P (CAT | GIRL), we build a

model with one cluster from HUMAN class and one cluster from CAT class, and use one

cluster from GIRL class for the classification. Class HUMAN has 5 clusters, class CAT

has 3 and Class GIRL has 3, so totally the above process is performed 45 times and the

results show that one cluster from class CAT will give a desired result when used with

clusters from other class. But this cluster is not the largest among the three clusters in

CAT. Taking the largest cluster does not yield good results this time. These limited ex-

periments indicate that clustering of text exemplars seems promising in resolving the “cat

and dog” problem, provided we find a way to identify the right clusters.

 - 48 - 48

 Other experiments we carried out include adjusting the number of exemplars used

and adding descriptive property of a class into a search query when collecting exemplars.

Table 13 is a comparison of results obtained by specifying different numbers of exem-

plars used by the system. These exemplars are processed at a sentence level.

Conditional Probability

Using
first 50
exem-
plars

Using
first 100
exem-
plars

Using
first 200
exem-
plars

P(ANIMAL | GIRL) 0.66 0.53 0.77

P(PLANT | GIRL) 0.34 0.47 0.23

P(HUMAN | GIRL) 0.86 0.56 0.43

P(CAT | GIRL) 0.01 0.15 0.01

P(DOG | GIRL) 0.13 0.29 0.56

P(PYCNOGONID | GIRL) 0 0 0

P(MAN | GIRL) 0.02 0.03 0

P(WOMAN | GIRL) 0.98 0.97 1

 Table 13 Comparison between different numbers of exemplars (keyword sentence)

With 200 exemplars for each concept, the system gives the best result for LEVEL1

(ANIMAL and PLANT) and Level 3 (MAN and WOMAN), but not LEVEL2. With 50

exemplars, the system gives the best result for LEVEL2 but not the others. Using 50 or

100 exemplars the system also gives a correct overall mapping. Considering other ex-

periments, using the first 50 or 100 exemplars processed at a sentence level seems to be a

safe setting for the system.

 - 49 - 49

We also tried queries augmented with class properties of each concept to find out

whether this would give good results. Table 14 shows these queries. We let the system

collect 100 exemplars for each concept based on the augmented queries and perform the

same mapping process as described in Experiment (1) and (2). The results of these ex-

periments are shown in Table 15 and 16. Different processing methods are compared.

Concepts Queries

liv-
ing+things Living+things

animal Living+things+animal+Animalia

plant Living+things+plant+Plantae

cat Living+things+animal+Animalia+cat+Felidae

human Living+things+animal+Animalia+human+intelligent

man Living+things+animal+Animalia+human+intelligent+man+male

woman
Liv-
ing+things+animal+Animalia+human+intelligent+woman+female

tree Living+things+plant+Plantae+tree

grass Living+things+plant+Plantae+grass

frutex Living+things+plant+Plantae+tree+Frutex

arbor Living+things+plant+Plantae+tree+arbor

Table 14 Queries augmented with class properties

Conditional Probability Whole
Keyword
Sentences

P(MAN | HUMAN) 0.91 0.93

P(WOMAN | HUMAN) 0.09 0.07

Table 15 Experiment (2) Queries augmented with class properties

 - 50 - 50

Conditional Probability Whole
Keyword
Sentences

P(ANIMAL | GIRL) 0.9 0.83

P(PLANT | GIRL) 0.1 0.17

P(HUMAN | GIRL) 0.78 0.83

P(CAT | GIRL) 0.22 0.17

P(MAN | GIRL) 0.14 0.16

P(WOMAN | GIRL) 0.86 0.84

 Table 16 Experiment (2) Queries augmented with class properties

From the results, we can see that the method of using augmented queries misses expec-

tations for Experiment (1) totally, but gives very good results for Experiment (2). Even

using the whole processed document as an exemplar, the results were still very good. We

would like to believe including class properties into queries is helpful. But the reason

why sometimes this method does not give good results should be further researched.

Based on all these experiment results, we can see using 50 or 100 exemplars processed

at a sentence level is generally a good setting for our mapping system. Text clustering on

the exemplars will definitely further improve the exemplars’ quality. Using queries aug-

mented with class properties should help too.

5. Discussions

 Our approach for ontology mapping employs naïve Bayes text classification method

to calculate the conditional probability of one concept in OntoA given another concept in

 - 51 - 51

OntoB, which is used as an initial evidence of similarity and can be used in further proc-

ess of the mapping [DPP05 and DPPY05]. The text exemplars used in this approach are

obtained by search the web using semantic information found in the ontology definition

file. Our experiment on the one hand produced positive supporting evidence for this ap-

proach, and at the same time have also revealed several limitations of this approach as

well as issues that need to be further studied.

5.1 A web page is not a sample of a concept

 When calculating a conditional probability, for example, P(MAN | HUMAN), sam-

ples of HUMAN in a given sample space should be collected and the conditional prob-

ability will be the ratio of MAN samples among HUMAN samples. When using a text

classifier to calculate conditional probability of such two concepts, we can never get an

individual sample of MAN or HUMAN, we can at the best get some strings that describe

such a sample. Then conditional probability is estimated by counting words frequency

and applying Bayes rule. This is totally different from the original definition of condi-

tional probability of two concepts. Though sometimes we can find effective methods to

make a better estimation, but that can never be accurate.

5.2 Popularity does not equal relevancy

 In principle, we want to search for web pages that are highly relevant to the concept

in question. However, relevancy is quite a subjective word. When we say a document is

relevant to a search query, what do we exactly mean? We know the main algorithm

Google uses for ranking the retuned pages is PageRank™ [gl]. Simply speaking, when

page A has a link to page B, that link will be counted as a vote for page B. If A is an “im-

portant” page considered by Google, the vote will worth more. Although there are other

 - 52 - 52

sophisticated text matching algorithms combined to calculate the rank of a page, if many

“important” pages have links to page B, page B will certainly has more possibility to

show up in the first a few pages of search result. So if a web page has more links to it, it

is possible that it get ranked higher. This may make sense to a human user sometimes but

not necessarily good for our purpose. For example, the first result returned by Google

recently for query “living+things+animal+human+woman” is an article in a blog. The

article is about animal rights, it has little to do with the concept woman. But it is ranked

the highest in the search result, just because the blog is called “woman to woman”, and

probably a popular blog on the web. To a human user, this popular blog might be what

she or he wants, but the text information contained in this document and quite a few oth-

ers obtained like this are not very helpful to a text classification. They are ranked higher

by Google according to Google’s algorithm. However, even though a search engine is our

best choice available, a search engine’s algorithm is never perfect and does not always

work well with our approach.

One possible solution to this problem is to use a large amount of exemplars, hoping

the irrelevant documents ranked by the search engine such as the above would only be a

small fraction. We believe text clustering may help in solving or lessening this problem.

5.3 Weight cannot be specified for words in a search query

 To form a search query, the parser usually concatenates several words together to get

better results as explained in previous sections. However, current web search technolo-

gies do not allow us to assign weights to different words in a search query, even though,

in most cases, what we care most is the last one or two words in the query. For example,

in the first ten search results returned by Google recently for the search query “living +

 - 53 - 53

things + animal + human “, only one of which has the desired text information to be used

as exemplars for the LIVING_THINGS ontology, which explains HUMAN in a zoology

context. All the others are general categorical information about animals, where the word

“human” appears one or a few times. The first result returned is a Yahoo! directory page

which listed links to animal related sites, for example, photos, categorical information to

different animal sites etc. For posting a search query like “living + things + animal + hu-

man “, what we really look for are web pages about “human” while the other words such

as living things and animal in the query provide a context for “human”, we are not really

interested in pages which are generally about “animal” or about “living things”. In other

words, we would like the search to be conducted with emphasis on “human” or to be

weighted heavily on “human”. Unfortunately, there is no ways available currently to let a

search engine understand such a request. The only advanced query available is with or

without a string, or a phrase. How to improve a search engine or find a better way to use

existing engines to accommodate a request like ours is an interesting topic to research

and should be in our future work.

5.4 Relevancy does not equal to similarity

 A search engine will return documents related to a query. What we are looking for are

documents that explain or use the concept in a proper context, which is only a subset of

the related documents returned as shown in Figure 13.

 - 54 - 54

Figure 13 Relation of desired exemplars with different parts of search results

As a result, even though the returned search results very closely related to a query, it is

still very difficult to correctly identify good exemplars. For example, web pages listed in

Google’s search results for query “WARPLANE+FIGHTER+PLANE” contain many text

information for MISSILE. To be quantitative, 91,000 results are returned by Google re-

cently for “WARPLANE+FIGHTER+PLANE”, among which 40,400, nearly 45%, con-

tain information for MISSILE. This agrees with our common sense, because a fighter

plane has a close relation with missiles, for example, most fighter planes carry missiles

and they can also be destroyed by missiles. However, in our experiments with WEAP-

ONS ontology, this information causes our automated system to map FIGHTER-PLANE

to MRBM, which is a class for medium-range missiles.

Neither search engine nor text classifier can differentiate these two types of informa-

tion: one type is information about the concept in question and the other is information

about things related to the concept. This makes it difficult to avoid wrong mappings in

 - 55 - 55

the results we obtained in WEAPONS ontology and explains further why we have the

“cat” and “dog” problem with LIVING_THINGS ontology. Correctly selecting the de-

sired exemplars out will improve the mapping results a lot. We believe that text cluster-

ing is a promising approach to achieve this goal and will find how to identify the right

cluster in search results in our further research.

6. Related Work

 Many people have used text classification methods to solve ontology mapping prob-

lem, but none has tried to automatically retrieve exemplars from the web for this purpose.

Our work is motivated by OntoMapper [SPF02], a semi-automated ontology mapping

tool, which is based on the text classification approach and also employs Rainbow as the

classifier. Before mapping, exemplars for each concept need to be manually collected.

The authors pointed out that the quality of mapping is greatly depended on the quality

and quantity of exemplars.

 CAIMEN [LG01] was developed to facilitate document retrieval and exchange

among members of Community of Interests by mapping a user’s local ontology to the

central document ontology shared by the community. The authors also used Rainbow for

text classification. The exemplars are the documents provided by human users. A feature

vector is calculated for each concept and a simple cosine similarity measure is applied on

the feature vectors of a pair of concepts. A pre-selected threshold is used to decide a

mapping. Like OntoMapper, CAIMEN is also only applicable if the users can supply ex-

emplar documents.

 - 56 - 56

 To decide whether one concept A in OntoA is semantically identical or similar to an-

other concept B in OntoB, one has to have a similarity measure. GLUE [DMDDH02] uses

the Jaccard coefficient [Ri79] similarity function, which is

So if A and B are identical, Similarity (A, B) should be 1 and if A and B are completely

different, Similarity (A, B) should be 0 according to this measure. To train a classifier

and perform classification, different learning techniques are used, one of which is a naïve

Bayes text classifier. The exemplars and the full name of the classes are used to produce

initial results. A full name is formed by names of every node on the path from the root

class to the concept, which is similar to how our parser forms search queries. A meta-

learner is developed to assign weights to results from different learners and calculate a

final result as an input to the similarity function. Again, this system assumes the exem-

plars have been given and each text exemplar represents an individual instance of a class.

 Some researchers in other applications also treat the WWW as a big sampling pool.

For example, in [WPC05], the authors also use Google search results to estimate condi-

tional probabilities. For a simple example, P(MAN | HUMAN) would be calculated as

the ratio of the number of search results returned for keyword “man” and the number of

search results for keyword “human”, which is 0.81 (1.83 billion divided by 2.25 billion

found by Google recently). As we discussed in Section 5.4, conditional probabilities ob-

tained in this way are in general very coarse.

7. Future Work

 - 57 - 57

 As mentioned in our discussion, if we were able to specify weights to search key-

words, the quality of the exemplars obtained would be further improved. In other words,

if we were able to search exemplars within some contexts, we would achieve better re-

sults. Actually, our current method creates some search context by augmenting the search

query with ancestors of a concept, which is shown to be not very effective. For example,

to search exemplars for class HUMAN in a LIVING_THINGS and ANIMAL context, we

used query “living+things+animal+human”, which gave us unexpectedly many docu-

ments about animal only with the word “human” appeared. If we cannot create such

search context successfully, there may be ways to differentiate exemplars in different

context afterwards, which can be done by text clustering. Text clustering will also help to

identify the right group of exemplars shown in Figure 11 from the generally related

documents effectively. Though we performed some preliminary text clustering experi-

ments, yet we are still lack of a reasonable method to select the proper clusters, which

leaves us some interesting future work.

 Another direction for future research is to find a reasonable similarity measure. We

are using conditional probability as a simple similarity measure to judge mapping per-

formance, which is not always accurate, especially when applied to non-leaf classes. Be-

cause conditional probability measures how related two events are and two related events

are not always necessarily identical. For example in one of our experiments with

WEAPONS ontology, we have P(SELF-PROPELLED-ARTILLERY | APC) as the high-

est among the leaf classes of WeaponsA.n3 given APC. From a probability theory point

of view, this is reasonable considering the close relation these two classes share. A good

similarity measure will help produce more accurate mappings.

 - 58 - 58

8. Conclusion

 We proposed to automatically retrieve exemplars from the web for text classification

based ontology mapping. We designed and implemented a fully automated system to col-

lect exemplars and calculate conditional probability of two concepts as an initial similar-

ity mapping. The tool can be very useful for ontology mapping tools and frameworks like

[LG01, DMDDH02, SPF02, DPP05, and DPPY05] and other researches using such a

conditional probability [WPC05].

 Although the experiment results are mixed, they are in general encouraging and shed

lights to the insight of this approach and further work. Two factors probably are most re-

sponsible for the less than ideal results. The first is the noise in the search results. Many

keyword based search results are not really semantically relevant to the keywords. The

second is that a search result is not really a random sampling of the web because all

search engines return results according to their own ranking algorithms. How to address

these problems and how to best utilize the imperfect exemplars in ontology mapping are

some of the directions for future research.

References

[BLHL01] Berners-Lee, T., Hendler, J. and Lassila, O., The Semantic Web, Scientific

American, 284(5), 2001

[cl] http://clusty.com

[DMDDH02] Doan, A., Madhavan, J., Dhamankar R., Domingos P., and Halevy A.,

Learning to Match Ontologies on the Semantic Web, WWW2002, May, 2002.

 - 59 - 59

[DPP05] Ding, Z., Peng Y. and Pan R.: BayesOWL: Uncertainty Modeling in Semantic

Web Ontologies”, in Soft Computing in Ontologies and Semantic Web, Springer-Verlag,

December 2005.

[DPPY05] Ding, Z,, Peng, Y., Pan, R., and Yu, Y., A Bayesian Methodology towards

Automatic Ontology Mapping. Proc of AAAI C&O-2005 Workshop. 2005.

[i3c] http://www.atl.lmco.com/projects/ontology/i3con.html.

[gl] http://www.google.com/technology/

[kif] http://logic.stanford.edu/kif/kif.html

 [Li04] Li, J., LOM a lexicon based ontology mapping tool,

http://reliant.teknowledge.com/DAML/I3con.pdf.

[LG01] Lacher, M. and Groh, G., Facilitating the Exchange of Explicit Knowledge

through Ontology Mappings, Proc of the Fourteenth International FLAIRS conference,

2001.

[MC96] McCallum, A., Bow: A toolkit for statistical language modeling, text retrieval,

classification and clustering, http://www.cs.cmu.edu/~mccallum/bow 1996.

[Mi97] Mitchell, T., Machine Learning, McGraw Hill, 1997.

[NP03] Niles, I. and Pease, A., Mapping WordNet to the SUMO Ontology, Proc of the

IEEE International Knowledge Engineering conference, 2003.

[Ri79] Rijsbergen, van C.J. Information Retrieval. London: Butterworths, 1979. Second

Edition.

[RL02] Reed, L. and Lenat, D., Mapping Ontologies into Cyc. Proc of AAAI 2002.

 - 60 - 60

[SPF02] Sushama, P., Peng, Y. and Finin, T., A Tool for Mapping between Two Ontolo-

gies Using Explicit Information, AAMAS 2002 Workshop on Ontologies and Agent Sys-

tems, 2002.

[sumo] http://www.ontologyportal.org

[UM06] Ushold, M. and Menzel, C., Achieving Semantic Interoperability & Integration

Using RDF and OWL, http://cmenzel.org/w3c/SemanticInterop.html.

[weka] http://www.cs.waikato.ac.nz/~ml/

[wn] http://wordnet.princeton.edu

[WPC05] Wyatt, D., Philipose, M., and Choudhury, T., Unsupervised Activity Recognition

Using Automatically Mined Common Sense. Proceedings of AAAI-05. pp. 21-27.

[WR04] Wiesman, F. and Roos, N., Domain Independent Learning of Ontology Map-

pings, Proc of AAMAS 2004.

 - 61 - 61

