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Abstract

A number of decoding strategies for large vocabulary continuous speech
recognition (LVCSR) are examined from the viewpoint of their search space
representation. Different design solutions are compared with respect to the
integration of linguistic and acoustic constraints, as implied bym-gram language
models (LM) and cross-word (CW) phonetic contexts. This study is structured
along two main axes: the network expansion and the search algorithm itself. The
network can be expanded statically or dynamically while the search can proceed
either time-synchronously or asynchronously which leads to distinct architectures.
Three broad classes of decoding methods are briefly reviewed: the use of weighted
finite state transducers (WFST) for static network expansion, the
time-synchronous dynamic-expansion search and the asynchronous stack
decoding. Heuristic methods for further reducing the search space are also
considered. The main approaches are compared and some prospective views are
formulated regarding possible future avenues.

c© 2002 Academic Press

1. Introduction

The focus of this paper is on the representations of the search space used in a number of
decoding strategies for large vocabulary continuous speech recognition (LVCSR). It appears
indeed that the specific way of handling the underlying search network constitutes one central
feature of any decoder, and reveals some of the common elements and real differences among
various decoding schemes. In particular, different solutions of structuring the search space
can be compared with respect to the integration of linguistic and acoustic constraints, as
implied bym-gram language models (LM) and cross-word (CW) phonetic contexts.

This study has been motivated by recent advances made in large vocabulary decoding, con-
cerning both the achieved level of practical performance as well as the emergence of a new
method for building a large vocabulary decoder. Near real-time capabilities are now quite
common using low-cost (500 MHz) personal computers, even for difficult tasks like broad-
cast news transcription. Interestingly, similar levels of performance are achieved using quite
different decoding strategies and architectures (DARPA, 2000). In addition, a full expansion
of the search network has been shown to be feasible using the weighted finite state transduc-
ers (WFST) framework developed at AT&T (Mohri, Riley, Hindle, Ljolje & Pereira, 1998).
This is quite a significant departure from the former belief that dynamic expansion could be
†E-mail:xavier.aubert@philips.com
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the only viable approach to LVCSR with long range LM because of the huge potential search
space, and this in turn deserves our attention to understand what made this evolution possible.

Before going further, the scope of the present study has to be made clear:

• The emphasis is on LVCSR using long-span LM like trigrams. Applications dealing
with very large item lists (for example, names or addresses related to directory assis-
tance) are not considered here (see, for example,Hanazawa, Yasuhiro & Furui, 1997).

• References are by no means exhaustive and were chosen to illustrate some “prototypi-
cal” cases.1

• Little attention is given to multiple-pass decoding and to the use of word-graphs. These
topics, while clearly important in developing a recognizer, deserve a more specific
study than can be given here.

• Likelihood computations will not be considered here though they often represent an
important part of the overall decoding cost, especially with mixtures of continuous
distributions. A number of methods can be applied to drastically reduce the complexity
of the mixture density calculations (see, for example,Ortmanns, Firzlaff & Ney, 1997).

Hence, we focus on the “pure” search aspects and on the influence of basic design choices
upon the overall complexity and efficiency of aone-passCW m-gram decoder. This study
has been structured along two main axes, namely,

• static vs. dynamic expansion of the search space;
• time-synchronous vs. asynchronous decoding.

As will be shown in the following, the decoder’s architecture is deeply shaped by the inter-
actions between these two main lines.

The paper is organized as follows. The general decoding problem is first formulated in
the Bayesian probabilistic framework for hidden Markov models (HMM) and the concept
of early recombination is introduced because of its key role in the efficient search for the
“best” state sequence. The main actions that have to be carried out by any LVCSR decoder
are described. The usual knowledge sources involved in a large vocabulary CWm-gram
decoder are reviewed in Section3, including the use of a phonetic prefix tree. This leads
to the representation of the whole search space in terms of a finite re-entrant network. A
convenient coordinate system is also introduced. Section4 presents a broad classification of
decoding methods in a tree-like diagram, based on the main axes of network expansion and
search strategy. The following two sections are devoted to a review of the principal decoding
approaches: Section5 gives a short presentation of methods that lead to a fullstaticexpansion
of the search network by exploiting the inherent sparsity and redundancies of the knowledge
sources and Section6 is devoted todynamicnetwork expansion techniques. Two basic ways
for dynamically exploring a tree-structuredm-gram network can be distinguished. These are
the re-entrant lexical tree method and the start synchronous tree method emphasizing, respec-
tively, the role of the wordlinguistic contextsand of the wordstart times. These two search
avenues are further explained in the framework of either a time-synchronous dynamic pro-
gramming (DP) search or an asynchronous stack decoder. In Section7, two heuristic methods
are briefly described for reducing further the size of the search space beyond standard beam
pruning capabilities, either by constraining the word start times2 or by looking ahead into
the acoustic content of the signal. Section8 addresses the methodology suitable for evalu-
ating a “real” decoder and presents some experimental evidence drawn from recent DARPA
1I sincerely apologize to the authors who could think that their work has been overlooked.
2The so-called word-pair approximation is one example of such technique.
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evaluation results for broadcast news transcription. It appears that there is no clear dominant
method so far and that the success of any decoder lies in the optimized integration of several
components. Finally, a number of pros and cons of the main search approaches are proposed
in the conclusion and several directions are considered regarding what could be promising
avenues for further improvements in large vocabulary decoding.

2. General formulation of the decoding problem

2.1. Bayesian framework and Viterbi approximation

In the Bayesian probabilistic framework, the decoding problem is specified by the well-
known “simple” equation

Ŵ = arg max
W

{P(O|W)P(W)},

whereO = oT
1 = o1, . . . , ot , . . . , oT is the time sequence of observation vectors represent-

ing theinputsignal, andW = wn
1 = w1, . . . , wn is a sequence of words within a vocabulary

of sizeNW. The linguistic grammar contribution is given byP(W) while P(O|W) contains
the other lexical, phonetic and acoustic knowledge sources. It is assumed that each word can
be expanded in a sequence of context-dependent HMM states, possibly conditioned on the
neighbouring words in case of CW modelling, which leads to the equivalent equation

ŵn
1 = arg max

wn
1

{
P(wn

1) ·

∑
sT
1

P(oT
1 , sT

1 |wn
1)

}

wheresT
1 stands for any HMM state sequence of lengthT being emitted by the word sequence

wn
1, each such sequence contributing, in general, to the overall sentence probability. In prac-

tice, the Viterbi criterion is applied and, under this “maximum approximation”, the search
space can be described as a (huge) network to be explored for finding the “best” path accord-
ing to

ŵn
1 = arg max

wn
1

{
P(wn

1)α · Max
sT
1

[P(oT
1 , sT

1 |wn
1)]

}
where the heuristic LM factorα has now been introduced as well. The recognized word
sequencêwn

1 is thus determined by the most probablestatesequence in the underlying search
network. What makes this decoding problem a formidable task is the combinatorial nature
of possible state sequences implying the use of complex algorithms with powerful heuristics
like beam pruning, an exhaustive search being intractable for almost any LVCSR task.

2.2. Recombination principle

The structure of the search network results from the contextual constraints that are introduced
by the knowledge sources at distinct levels (state, phone, word) and are applied both within
and across words. As we will see, the scope (i.e. the range of influence) of these constraints
is quite limited in the currently used knowledge sources characterized by a “short memory”.
This restricted scope allows for an important optimization of the search process based on the
concept of earlyrecombinationthat can be formulated as:
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Select the “best” among several paths in the network as soon as it appears that these paths
have identically scored extensions, implying that the current best path will keep dominating
the others.

In other words, do not waste computational resources by extending partial theories that
have no chance of leading to the best sentence anymore! The action of recombining hypothe-
ses is also often namedpath merging. As an example, with a general LMP(W), the search
network would be an exponentially growing tree of distinct word sequences without possi-
ble recombination. However, the currently usedm-grams rely on probabilities that depend
only on the lastm–1 words of the hypothesized phrase, the former preceding words being no
longer taken into account by the LM.

Recombination is inherent to the dynamic programming formulation (Bellman, 1957) and
is also important in theA∗ search algorithm used for sequential decoding (Nilsson, 1998)
where its role has been recently made more explicit.3 Consequently, identifying promptly the
recombination nodes is a must towards efficiency and this might be non-trivial in some cases,
for example, when a CW network is dynamically expanded.

2.3. Main actions to be performed by any decoder

Broadly speaking, the task to be carried out by a large-vocabulary continuous-speech decoder
can be decomposed in terms of five basic “actions”:

1. Generating hypothetical word sequences, usually by successive extensions.
2. Scoring the “active” hypotheses using the knowledge sources.
3. Recombining i.e. merging paths according to the knowledge sources.
4. Pruning to discard the most unpromising paths.
5. Creating “back-pointers” to retrieve the best sentence.

In this study, the focus will be primarily on the first and third “actions” that are the most
affected by the type of search space representation. For example, if the search network has
been statically expanded as a graph, generating hypotheses simply means moving to the next
arcs and recombination proceeds at pre-defined nodes where the “best” scored path is selected
for further extensions. The second and fourth points are shortly addressed in Section7 while
the fifth point will be left aside.

3. Representation of the knowledge sources

The knowledge sources used in automatic speech recognition are naturally structured in a
four-level hierarchy with, successively, the acoustic HMM states, the phones in context, the
word models and finally, the sequences of words or phrases up to the sentence level. The
specifics of HMM states and emission probability distributions will be left aside since they
do not directly interact with the search network4 and we will only be concerned with the
other three modelling levels.

3.1. Use of stochastic m-gram LM

The role of the LM is to introduce constraints upon the word sequences expressing the syn-
tactic and semantic characteristics of the linguistic domain at hand. The use of astochastic
m-gram LM has two clear implications:
3The situation where the graph to be searched could not be a tree is considered on p. 142 ofNilsson(1998).
4Apart from the occurrence of model copies due to parameter tying as considered in Section5.1.
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Figure 1. Prefix tree structure of the lexicon with LM look-ahead.

1. the search network is fully branched at the word level, each word being possibly fol-
lowed by any other;

2. the word probabilities depend on them − 1 predecessors only:

P(wn|wn−1, wn−2, . . . , w2, w1) = P(wn|wn−1, . . . , wn−m+1)·

Consequently, the recombination nodes at word ends are defined in terms of them − 1
predecessors and the search process must somehow keep track of the individualm − 1
word histories, until the optimization step can take place. How this is precisely achieved
and implemented depends on the actual design of the decoder and will be explained in the
next sections. As already mentioned, postponing the recombination step beyond them − 1
word phrases would be useless and inefficient. However, merging concurrent theoriesbefore
this point would be sub-optimal with a high risk of making search errors by losing the best
path due to a wrong integration of the grammar constraints. We will come back to this point
in Section7.

3.2. Prefix-tree organization of the lexicon

The lexicon defines the list of words with their phonetic transcriptions in terms of a small
number of context-independent phoneme symbols. Some word entries may have multiple
pronunciations, possibly with prior (unigram) probabilities associated to their occurrence
frequencies (Schramm & Aubert, 2000).

Structuring the lexicon as a phoneticprefix treeis widely applied since it provides a com-
pact representation with a reduced number of arcs, especially at the word beginnings where
most of the search effort occurs. Indeed, when using a stochasticm-gram LM each word
of the lexicon is a possible successor to every hypothesized word end. Hence, sharing the
common word stems results in a dramatic reduction of the number of phone arcs needed
to generate the next word startup hypotheses. The prefix tree can be built from context-
independent phoneme transcriptions or expanded with context-dependent phones (like tri-
phones), the number of arcs in the first generation being then increased from a few tens to
several hundreds.

A problem inherent with the use of a prefix tree is that word identities are onlydefined
at leaves which delays the integration of the LM probabilities (see Fig.1). The solution
consists in factorizing the word probabilities across the phonetic arcs, a technique called
LM smearing or forwarding (Steinbiss, Tran & Ney, 1994; Alleva, Huang & Hwang, 1996;



94 X. L. Aubert

Sil

I

A

NON CW

Fa

ISil

AF

T

a f

*

* *

*i

tOU

Sila
N

iNa
l

Ni

n N

ou

n n

ou

nf

* a *
*

n N

*

l

ou r'
r'

*

n T

r
r

OUt

CW triphones

Figure 2. CW vs. non-CW triphone transitions.

Ortmanns, Ney & Eiden, 1996). This achieves a double effect of (1) anticipating the word
probabilities and (2) smoothing the score distributions across the phonetic arcs, both factors
being highly beneficial for the pruning efficacy. Another interesting side effect consecutive
to LM smearing concerns the handling of the so-called “linear tails” in the prefix tree. These
phonetic arc sequences appear when a given word no longer shares any arc with another word
such that the factorized LM probabilities are equal to one. These tails can be merged across
all linguistic contexts and this happens at any point of the lexical tree from which a word
identity is uniquely determined.

More general structures than a straightforward prefix tree can lead to larger reductions
of the lexical redundancies, for example, by merging both the identical word beginnings
and endings into a phoneticnetwork.5 However, the construction of such a network is more
complex and the decoding algorithm has to be modified since word identities are no longer
uniquely defined at leaves as happens in a prefix tree, which also has some influence on the
smearing of LM scores (seeDemuynck, Duchateau & Van Compernolle, 1997; Hanazawa
et al., 1997).

3.3. Context-dependent phonetic constraints

The use ofcontext-dependentphone models is not indifferent regarding the search space
especially at the junction between successive words. Figure2 gives an example of inter word
transitions when using either CW or only within-word triphone contexts. With CW models,
the last triphone arc of the predecessor word must be replicated since it depends on the first
phoneme of the following words, which is known as the fan-out expansion. The wild card
symbol∗ stands for any context and non-cross-word triphones degenerate to left or right
diphones at a word boundary.

The constraints introduced by context-dependent phones have a quite limited scope too,
being restricted to just the neighbouring phones for triphone HMMs. This means, for exa-
mple, that the left conditioning context of a CW triphone at word start does not exert its
influence ahead of the first phone. If only linear sequences of words are considered by the
decoder then, of course, the use of CW contexts makes no difference in terms of the size of
the search space. In the general case, a word end hypothesis may be followed by several or all
lexical entries. Consequently, the definition of recombination nodes must be extended to take
account of the right contextr of the fan-out arc since the subset of words that may follow
will be restricted to the words starting with phonemer (Aubert, 1999).
5Sharing common suffixes is especially effective when the lexicon includes across-word fan-out arcs.
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3.4. Search-space coordinate system of four dimensions

Following the presentation of the knowledge sources given in the previous sections, the
search space of a general “CWm-gram” decoder can be described as a finite re-entrant net-
work with recombination nodes that depend onm − 1 predecessor words and possibly on
the fan-out right contexts (Aubert, 1999). The corresponding search space can be spanned by
means of four-dimensional coordinates representing, respectively:

1. the time index,
2. the LM state,
3. the phonetic arc,
4. the acoustic state,

where the LM state is defined as them−1 word history, possibly augmented with the fan-out
right context for CW models. Depending on the search strategy, the time coordinate will be
the independent variable or not. The last two coordinates specify the position in the actual
word model with respect to the prefix tree organization while the second axis determines the
predecessor word history considered by the LM. This coordinate system is quite useful for
describing some organizational aspects of the search algorithms described in Section6.

3.5. Illustration of a bigram non-CW search network

Considering a three-word lexicon{U, V, W} plus a sentence-start symbol〈s〉, the bigram
search network can easily be expanded for non-CW phones. The impact of the lexical orga-
nization is quite interesting and deserves some comments. If the lexicon is structured as a
prefix tree, the LM recombination has to be postponed up to the wordendswhich leads to
the need for copies of the lexical tree in distinctm-gram contexts, as illustrated in Fig.3. The
bigram tree network requiresNW + 1 copies of the lexicon conditioned on the predecessor
words and there are≈NW

2 possible word transitions. In the generalm-gram case (m ≥ 1),
the total number of prefix tree copies is equal toNW

m−1 whereNW is the lexicon size andm
the LM order.

On the other hand, when using a (flat) linearly-structured lexicon, the LM recombination
can be performed at the word startups using empty transitions bearing them-gram probabili-
ties and, in thebigramcase, there is no need of lexical copies as shown in Fig.4. In the general
m-gram case (m ≥ 2), the total number of copies of the linear lexicon would now beNW

m−2.
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Compared to the prefix tree case, the number of word arcs is smaller by a factor equal to the
vocabulary size. However, the decoding cost using a beam search technique would be much
larger with a linear lexicon. This is due to the fact that, the common word stems not being
shared, a much larger number of arcs will be activated at each word end hypothesis. This
shows that minimizing the total number of arcs in the static expansion of a search network
is not necessarily the best criterion from the viewpoint of the computational decoding costs,
even if it reduces the storage requirements. This apparent paradox is solved when consider-
ing the degree of determinization of the networks as defined in finite state automata theory
(Aho, Hopcroft & Ullman, 1974): the linear lexicon network is definitely non-determinized
(see Section5.3). The whole “CWm-gram” network can be obtained by combining and
generalizing the schemes illustrated in Figs2 and3.

4. Broad classification of decoding methods

Before proceeding to a brief description of several basic algorithms for large vocabulary con-
tinuous speech decoding, a (tentative) classification is first proposed by means of a decision-
tree. This, however, requires anticipating somehow what will be explained in the next sections
and, therefore, the reader is likely to come back to Fig.5 later on.

The first two questions concern, naturally, the network expansion mode and the search
strategy itself which constitute the main axes of the present study. If the decoder relies
on a static expansion of the network prior to decoding, then any search algorithm may
be applied though in practice a straightforward time-synchronous Viterbi search is often
adopted. If the network expansion is done dynamically “on the fly”, the choice of either
a time-synchronous or an asynchronous search strategy appears determinant. The second
choice leads to a stack decoding approach which may involve one or several stacks (i.e. sorted
list of running theories). In both cases, the emphasis is placed on asequentialexpansion of
individual word sequences along the time axis which leads to the most “depth-first”-like
search strategy as indicated by the low horizontal axis.

Coming back to the time-synchronous search, there are two main ways of structuring the
search space, either on the word histories or on the start time of the words. The first case leads
to the popularRe-Entrant Treemethod strongly associated with the dynamic programming
approach where time is the independent variable and the expansion proceeds in parallel in a
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“breadth-first” manner. The second way is an interesting hybrid case that has been considered
by both search strategies, namely, the use of start-synchronous trees.

The terms “breadth-first” or “depth-first” are to be interpreted with care in the present con-
text of LVCSR. First, the search is usually expanded at the state level, not at the whole word
level and, second, a number of heuristics are always involved to narrow down the network
exploration. Time-synchronous search relies heavily on beam pruning to restrict the number
of hypotheses developed in parallel and asynchronous stack decoding attempts to implement
a “best-first” expansion far beyond a crude “depth-first” search.

5. Static network expansion

Expanding the whole search network prior to decoding is by no means new or recent. Ac-
tually, this has long been the most natural approach to LVCSR until the increase of the vo-
cabulary size in conjunction with ever more complex knowledge sources made it impractical
or even impossible, due to memory limitations. The issue then became either to proceed to a
“on the fly” expansion (see Section6) or to consider optimization techniques for compacting
the network.

5.1. Sparsity of knowledge sources and network redundancies

There are two main sources of potential reduction of the network size:

• exploiting thesparsityof the knowledge sources;
• detecting and taking advantage of theredundancies.

The sparsity of the current knowledge sources stems essentially from theirregular struc-
ture inherent to simplified model assumptions and partly also from limited training data. The
redundancies are, in general, introduced by the systematicsubstitutionmechanism used for
constructing the network from smaller size units like HMM phones or word models. They are
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also caused byad-hocstructures like a phonetic prefix-tree where tails are left unshared, and
due to model duplication, for example, consecutive to parameter tying. Takingexplicitadvan-
tage of the modelling sparsities and applying optimization techniques drawn from finite-state
automata theory are the two principal avenues towards network compactness.

The degree of sparsity is especially striking for anm-gram LM with m > 2 but is also
an issue with CW position-dependent contexts that are usually “generalized” by decision
trees. Let us consider a practical example of a 64 K word trigram, typical of a state-of-the-
art LVCSR system. Among the 4 billion possible word bigrams, only five to 15 million are
included in the model and, for each of these “seen” word-pair histories, theaveragenumber
of trigrams is comprised between two and five. Such a LM would have about five to 15 million
states and 15 to 90 million arcs, requiring between 100 and 600 MB of storage. This means
a reduction by seven orders of magnitude with respect to aplain 64 K trigram that has about
250 trillion (1012) of arcs.

Concerning CW triphones, the number of distinct models after generalization is typi-
cally one order of magnitude smaller than the full inventory of position-dependent contexts.
Indeed, there are about 453

× 3 ≈ 273 000 distinct contexts when distinguishing between
word begin, word end and word internal triphones based on 45 monophone symbols while
the number of distinct phone HMMs after tying appears to be approximately around 25 000
in a large system.

5.2. Central role of the m-gram LM in the search network

Coming back to the use of anm-gram LM, the probability of a word in an unseen con-
text is generally obtained with an interpolation scheme involving shorter history counts, for
example, bigram and unigram counts for a trigram. Along this line, back-off “null” nodes
(Placeway, Schwartz, Fung & Nguyen, 1993) have long been used in several systems to take
advantage of the small fraction of observed bi- or trigrams. Figure6 explains the use of a null
node in an interpolated backing-off bigram model whereλ(U ) is the backing-off normaliza-
tion factor andP(V) the unigram prior. When a word-pair has not been “seen” in the training
corpus, the bigram probability is factorized in two termsP(V) × λ(U ) withoutconditional
dependency on the predecessor wordU . Consequently, for these unseen word-pairs, recom-
bination can be done similarly to the unigram case, on the null node at each word ending,
without the need of so-called word copies.

This backing-off property has been exploited inAntoniol, Brugnara, Cettolo and Frederico
(1995) for carrying out a static tree-based representation of a bigram network. The prefix tree
of thewholelexicon appears only once at the “null” node while the other predecessor nodes
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are connected each to a much smaller subtree constructed from the words that belong to the
bigrams seen in this linguistic context. As indicated in Fig.7 below, the average number of
phonetic arcs in the subtrees is very small, being reduced by a factor of 600 with respect to
the whole tree, due to the characteristics of this radiology task, presumably of low perplexity.

Another advantage ofstatictree-based networks is the ease of factorizing the truem-gram
probabilities which can be smeared across phone sequences from leaf to root, while building
the search network. This results in many linear arc sequences appearing at word endings with
an incremental probability of one, consecutive to the factorization process. These linear tails
(see Fig.1) are redundant paths that can be merged and treated in common for all linguis-
tic contexts of that word (Antoniol et al., 1995). Other less trivial redundancies are further
reduced by applying general optimization techniques developed in the framework of finite
state automata (Aho et al., 1974), leading to another compaction of the network by a factor
of two to three. Interestingly, the main impact of these additional redundancy removals is
memory saving andnot speed-up of the decoding (Antoniol et al., 1995), since most of the
search effort is spent in the first two tree generations due to the focusing capabilities of beam
pruning. This technique has been recently extended to a trigram LM with multiple backing-
off nodes as illustrated inBertoldi, Brugnara, Cettolo, Frederico and Giuliani(2001).

5.3. Weighted finite state transducer method (WFST)

This approach is the outcome of several research years at AT&T and has recently reached
the point of becoming an attractive alternative for building a large vocabulary decoder (see
a.o. Pereira, Riley & Sproat, 1994; Mohri et al., 1998; Mohri & Riley, 1999; Boulianne,
Brousseau, Ouellet & Dumouchel, 2000; Bazzi & Glass, 2000, and elsewhere in this special
issue). It offers an elegant unified framework for representing the knowledge sources and
producing a search network optimized up to the HMM state level. Along this line, it integrates
and extends the main ideas exposed in the previous section devoted to the central role of the
LM in the search network. The WFST approach is very briefly sketched as follows:

(1) transducers are finite state networks associating input and output symbols on each arc
possibly weighted with a log probability value. They can be used for representing
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all knowledge sources involved in LVCSR like a lexicon with pronunciation variants,
stochasticm-grams or deterministic phone-in-context expansion rules;

(2) transducers can be combined using thecompositionoperator, leading to the integration
of the underlying modeling levels in one input-output relation. For example, using
the symbol “o” for the composition operator,{C o L o G} would provide a mapping
from context-dependent phones up to word sequences, the transducers G, L and C
representing, respectively, the grammar model, the context-independent lexicon and
the context-dependent phones;

(3) the network is further optimized by weighted determinization followed by minimiza-
tion, two techniques borrowed from finite state automata theory. An optional step that
comes after the network has been determinized, consists of “pushing” the weights
towards the initial state much like the already described language smearing technique
(Mohri & Riley, 1999). The order in which the individual transducers are composed
and optimized might also play a role in obtaining the most compact search network.

The third point deserves some comments concerning the criteria that are pursued for
optimizing the network structure. Determinization aims—ideally—at getting a network where
any input sequence is matched by, at most, one path, thus reducing the computer time and
space for decoding (Mohri, Pereira, Riley & AT&T Labs Research, 2000). In practice, this is
a complex task implying a.o. the elimination of all empty arcs such that the total number of
arcs might be increased in the determinized network. When applying the WFST method, this
pre-processing step is the one that requires the largest computational resources, especially in
terms of memory needs. Note that WFST can also be used “on the fly” during decoding and
not only for getting a static network expansion. However, this prevents from doing aglobal
optimization of the network and makes the decoder more complex.

Some of the main achievements of WFST can be summarized as follows:

• the knowledge sources are handled in a highly flexible way, independently of the
decoder specifics, for example, about the contextual scope of the linguistic or phonetic
constraints;

• the final optimized network is typically a few times larger than the original LM in terms
of number of arcs;

• CW context expansion increases the network by just a few percent with respect to the
optimized context-independent network (Mohri et al., 1998).

This last point is quite remarkable and results from postponing the context expansion after
having taken advantage of them-gram sparsities and lexical redundancies such that, presum-
ably, relatively few fan-out expansions are still necessary.

Many issues remain open and are currently under study. One direction of work points to the
network pre-processing stages and aims at reducing the memory requirements which appear
like a bottleneck when very large (language) models are considered. A second direction con-
cerns the best way to handle the final network: should it be loaded in central memory or
could it be left on disk and efficiently accessed on-demand? Another related topic concerns
the possibility of expanding and optimizing statically some of the knowledge sources while
handling the others dynamically. InDemuyncket al. (1997), such a “hybrid” approach has
been presented where the lexical and phonetic constraints are optimized statically, the LM
being decoupled from the other knowledge sources. We will come back to this point in the
final conclusion.
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6. Dynamic search network expansion

Integrating the network expansion in the decoding process has received considerable atten-
tion, partly from necessity because of the potential search space size, but also motivated by
the self-focusing property of beam search. Applying the best knowledge sources from the
outset to get the strongest constraints on the search space has been the key idea leading to
one-pass decoders based on dynamically built networks (Jelinek, Bahl & Mercer, 1975; Bahl,
Jelinek & Mercer, 1983; Ney, Mergel, Noll & Paeseler, 1987; Ney, Haeb-Umbach, Tran &
Oerder, 1992; Odell, Valtchev, Woodland & Young, 1994).

An important aspect has consisted, so far, of assuming theregularityof the network struc-
ture to deal with the “CWm-gram” constraints, mainly for pragmatic reasons related to al-
gorithmic complexity. Along this line, a phonetic prefix-tree organization of the lexicon has
imposed itself as a generic building block of the network, since it offers a good tradeoff
between simplicity and compactness at word start. It must be understood that this generic
tree structure is only stored once and that the search network will be constructed partially
and dynamically using virtual nodes and temporary structures containing only the necessary
information to process the expanded hypotheses.

Another “key” feature concerns the point of view adopted for structuring them-gram
search space where the emphasis can be placed either on thelinguistic contextor on the
start timeof a word.

Hence, two basic approaches are identified for dynamically exploring anm-gram tree-
structured network and generating word sequences of increasing length:

• the re-entrant tree where a virtual tree copy is explored for each active linguistic
context. This information remains “attached” to each path6 and recombination is per-
formed at virtual root nodes that depend on the history taken into account by the LM.
This method is also known as the “word-conditioned search” (Ney et al., 1992). This
is illustrated in Fig.8;

• the start-synchronous treewhere a virtual tree copy is being entered at each time
requesting successor word hypotheses. All paths having reached a word end hypothesis
at a given time are thus extended by exploring the same virtual tree copy associated with
this starting time. The terminology has been suggested inRenals and Hochberg(1999),
but the method has also been described as the “time-conditioned search” (Ortmanns &
Ney, 2000). Figure9 explains this second strategy.

6Similar to the token passing principle (Young, Russel & Thornton, 1989).
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Both methods have been applied in the framework of time-synchronous dynamic pro-
gramming search while the second has also been investigated in multi-stack asynchronous
decoders.

6.1. Time-synchronous search based on a re-entrant lexical tree

This appears the most popular technique used for LVCSR, probably because of the conceptual
simplicity of the early dynamic programming decoders it is originating from, and because
the network expansion closely follows the static counterpart described in Section5. As in
all time-synchronous search methods, state hypotheses are developed in parallel and scored
against the same portion of the input signal which leads to a straightforward implementation
of beam pruning. The integration ofm-gram and CW constraints in this search architecture
is, however, non-trivial.

For a correct handling ofm-gram probabilities, it is necessary to keep track of the indi-
vidual m-1 word histories of the active paths, until the recombination step can take place at
the next word ending.7 One important feature here is that the word-boundary optimization is
carried out by the DP recurrence at virtual nodes when re-entering the tree (Ortmanns, Ney
& Aubert, 1997). This implies that, for each word ending at the current time index, only one
segmentation will be selected between that word and its predecessorm–1 history, which is
known as them-tuple optimization (Neukirchen, Aubert & Dolfing, 2000). LM look-ahead
is usually performed on-demand for a truncated word history using either a special unigram
or bigram model or a cache to store the factorized probabilities (Ortmannset al., 1996).

Two search organizations have been pursued with a re-entrant tree to fulfil them-gram
optimality criterion and they are best explained with the coordinate system introduced in
Section3.4. The differences mainly concern theorder in which the three search-space coor-
dinates are spanned, time here being the independent variable as shown in Fig.10.

6.1.1. The word history conditioned DP organization

The hypotheses active at the “current” time are recorded in lists structured on a three-level
hierarchy as shown in Fig.10. The leading variable is the word history which is coded as
anm-gram state index. This means that the three dependent coordinates of the search space
are spanned in the following order: LM-State→ Arc-Id → State-Id, the emphasis being
on the common predecessor word history shared by the next words being expanded. An
7Sub-optimal schemes can also be used when suitable (e.g.Nguyen & Schwartz, 1998) and are addressed in Sec-
tion 7.
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additional structure keeps track of the “back-pointers” to retrieve the preceding words up
to the sentence start. This algorithm has been introduced inNey et al. (1992) and further
extended inOrtmannset al. (1996) andAubert(1999).

6.1.2. The per-state stack organization

This method focuses on the multiple instantiations of the same HMM state that happen when
a phonetic arc is simultaneously active in differentm-gram contexts. The ordering of the
coordinates becomes: Arc-Id→ State-Id→ LM-State where the word history appears now
in the last position. Compared to the word history conditioning, the per-state stack offers
some more flexibility for pruning at state level, possibly in conjunction with other less “strict”
recombination rules (Alleva, 1997; Finke, Fritsch, Koll & Waibel, 1999). Along this line, the
concept of subtree dominance leads to a minimax criterion such that all hypotheses contained
in a subtree can safely be discarded under certain conditions (Alleva, 1997).
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6.1.3. Integration of CW contexts

In a time-synchronous dynamic search, CW phone modelling implies that multiple contexts
have to be considered at word ending toanticipatefor the next successor words. This leads
to the concept of fan-out expansion (Odellet al., 1994) where the last phonetic arc of a word
is given several instances, each with a distinctright conditioning context. This step can be
made more efficient by (1) taking advantage of the redundancy among tied phone HMMs
to reduce the fan-out size (Sixtus, Molau, Kanthak, Schlüter & Ney, 2000) and (2) applying
a special language look-ahead pruning scheme (Aubert, 1999; Ortmanns, Reichl & Chou,
1999). Indeed, the identity of the right context restricts the set of successor words such that
the most promising fan-out arcs can be selected by taking the comingm-gram scores into
account. Them-gram recombination at word ends has to take account of this successor con-
straint (Aubert, 1999) and can possibly be performedbeforeexpanding the fan-out. Finally,
when re-entering the tree, the phonetic arcs have to be selected according to the fan-out right
context and the left context of these first generation arcs is specified by the last phone(s) of the
previous word. This implies either an “on the fly” instantiation of the corresponding context-
dependent HMM or using multiple instances of the first generation arcs. Figure12 illustrates
the main lines of CW transitions in the framework of a re-entrant prefix tree, where two cases
of optional pauses are considered between consecutive words: the first one concerns a “short”
silence compatible with across-word coarticulation while the second case is a “long” pause
that can be followed by any word of the lexicon, as indicated by the wild card symbol∗

(Aubert, 1999).

6.2. Time-synchronous search based on start-synchronous trees

The main idea here is to share a single one-word extension step among paths ending at the
same “current” time, however, with differentm-gram histories. In this way, the DP time-
alignment process is done at most once per word model and per start time, avoiding the need
for the so-called word copies. The search space is thus structured on the start time of the
successor words which are hypothesized by propagating the DP recurrence across one pre-
fix tree started at that time. As a consequence, the word-boundary optimization is no longer
performed implicitly as for the re-entrant tree, and has to be carried out in a separate step
occurring at each word ending. This is beneficial for generating dense word graphs (Oerder
& Ney, 1993; Ney, Ortmanns & Lindam, 1997) but makes the word-end recombination step
quite expensive (Ortmanns, Ney, Seide & Lindam, 1996). This is, however, compensated by
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the size of the activated search space which appears almost independent of the LM complex-
ity. A remarkable feature is that the average number of active tree hypotheses per time frame
is about the average word duration (Ortmannset al., 1996; Ortmanns & Ney, 2000).

On the other hand, this architecture appears less favourable for CW context expansions and
for m-gram look-ahead pruning schemes involving more than just unigram probabilities. This
is a direct consequence of sharing the prefix-tree expansion among simultaneously ending
words bearing different linguistic and phonetic (left) contexts (see Fig.9) as opposed to the
re-entrant tree where paths with distinct histories are grouped accordingly. To the best of
my knowledge, this method has only been tested with unigram language smearing and for
non-cross-word models, so far.

6.3. Asynchronous stack decoding

This approach stems from sequential decoding methods developed some decades ago in com-
munication theory (Jelineket al., 1975). In LVCSR, a stack decoder implements abest-first
tree search which proceeds by extending, word by word, one or several selected hypothe-
seswithout the constraint that they all end at the same time. Running hypotheses are han-
dled using astackwhich is a priority queue sorted on likelihood scores and possibly on
time. Depending on the implementation, there may be one single stack (Paul, 1992) or sev-
eral stacks (Hochberg, Renals, Robinson & Kershaw, 1994), each one grouping the theories
associated to the same end-time. Distinguishing between uni- and multi-stack techniques will
not be further considered here, being outside the scope of this overview.

Compared to time-synchronous beam search, there are three specific problems to be solved
in a stack decoder:

• which theory(ies) should be selected for extension?
• how to efficiently compute one-word continuations?
• how to get “reference” score values for pruning?

The first point relates to the use of heuristics (known asA∗ principle), and essentially depends
on which information is available regarding the not yet decoded part of the sentence. In
a multi-pass strategy, a first decoding can provide an estimation of the probability for the
“remaining” part. A good example of such a situation is the computation ofN-best sentence
hypotheses in a scored word graph where a first backward pass can provide at each node the
score of the best path up to the sentence end. For a one-pass decoder, however, an estimation
of the future path likelihood can only be obtained by a look-ahead technique. An alternative
that does not need looking-ahead in the signal has been presented inPaul(1992) and relies
on least upper bounds taken on the path scores that have been expanded so far. In practice,
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this leads to a “shortest best path” choice (Gopalakrishnan, Bahl & Mercer, 1995; Renals &
Hochberg, 1999; Willett, Neukirchen & Rigoll, 2000) with the consequence that the search
space expansion becomes quasi-synchronous i.e. without large end time differences between
active theories.

The one-word extensions can either be computed with the start-synchronous tree method
of previous section (Hochberget al., 1994) or using a fast-match algorithm to first get a short
list of word candidates that are then processed sequentially for continuing one (or more)
theory (Gopalakrishnanet al., 1995; Novak & Picheny, 1999). This fast-match component
typically relies on a lexical prefix tree and on simplified acoustic models to achieve the high-
est efficiency.8 Concerning the start-synchronous lexical tree exploration, it is worth pointing
out that this step has been achieved either with a standard time-synchronous DP scheme
(Hochberget al., 1994) or with a “time-first” asynchronous method (Robinson & Christie,
1998), the latter requiring less memory storage.

Pruning is non-trivial due to the difficulty of comparing the scores of paths having different
lengths. The solution consists of progressively updating the best likelihood scores that can be
achieved along the time axis by a path having complete word extensions. This requires storing
temporarily the score sequences of the respective paths. Broadly speaking, this leads to the
concept ofenvelopedefined as the lowest upper bound of the individual score “profiles” of
the paths expanded so far (Gopalakrishnanet al., 1995). Based on the current score envelope,
a path may be labelled as active or not and this decision may be reconsidered in the course of
the decoding process.

Last, integrating CW phonetic contexts is easily achieved in two stages (Gopalakrishnan
et al., 1995; Schuster, 2000) by considering left-only conditioned contexts first, and after
the one-word extension has been accomplished, proceeding to a re-scoring with the now
available right context. The main difference and relative advantage with respect to a time-
synchronous search is that CW contexts can be applied on individual word strings with great
ease for incorporating longer context ranges (at least to the left), without the need of fan-out
expansions. Likewise are long-range LM constraints easily integrated, the recombination step
being subjected to the already known dominance principle.

7. Heuristic techniques to further reduce the search space

So far in this paper, beam pruning has been the principal heuristic considered for control-
ling the size of the explored search space. The heuristic character means this is anapprox-
imation susceptible of introducing search errors i.e. with no guarantee of finding the best
state sequence given the knowledge sources. In this section, two distinct avenues are briefly
described for further reducing the search space in addition to the usual beam pruning: the
first aims at decoupling them-gram probabilities from the acoustic–phonetic constraints and
the second concerns acoustic look-ahead pruning.

7.1. Decoupling the LM from the acoustic–phonetic constraints

The best state sequence is the one that maximizes thejoint probability of all knowledge
sources given the input signal. Due to the different nature of the acoustic, phonetic and lin-
guistic constraints, decoupling them-gram contribution is especially appealing as the latter

8Time-synchronous search can of course also benefit from such acoustic look-ahead pruning, usually done at the
phoneme level as will be seen in Section7.
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involves the longest contexts, namely, word phrases. An interesting avenue is to dissociate as
much as possible the optimization of wordtimeboundaries from the LM probabilities.

7.1.1. Interactions between LM contribution and word boundaries

The use of long-span LM implies that the hypotheses with distinct word histories have to be
kept separate until them-gram probability can be applied. This means that several instances
of the same word modelw ending at the same timet , noted aswt , may occur with different
histories(u, . . . , v) with the consequence that the “optimal” start timeτ of wt is not neces-
sarily unique. It is clear, however, that the segmentation points result from the time-alignment
of the acoustic–phonetic models and do not depend directly on the LM. Different start-times
τ are likely to occur only when the predecessor words ofwt arephoneticallydistinct and
this might be exploited to avoid redundant evaluations of the same word model in the same
interval.

As a matter of fact, any continuous-speech decoder has to somehow perform this word
boundary optimization step. In the time-synchronous search based on a re-entrant tree, this is
implicitly achieved by the recombination at (virtual) tree root nodes and leads to them-tuple
optimization step of the word boundary (Neukirchenet al., 2000):

τ = f (u, . . . , v, wt︸ ︷︷ ︸
m words

; t)

which provides a unique start time value ofw for eachm-tuple ending withw at t . The bound-
ary τ is assumed to depend on the wholem-gram word history and not only, for example, on
the phonetic content near the frontier between wordsv andw. Note that a possible influence
on τ of earlier words precedingu is already integrated in the sentence trunk common to all
theories being expanded.

With the start-synchronous tree technique, this optimization has to be carried outexplicitly
over all start times ofwt hypotheses that are produced by different “start trees”. This in
turn implies that these word hypotheses have been stored and can be efficiently retrieved.
And similarly for the stack decoding method where this optimization happens sequentially
when the successive theories are being expanded. In all cases, there is a potential interest for
determining and exploiting the constraints that are really relevant to the word boundaries,
especially with the use of LM of still increasing orders, beyond a trigram or a fourgram.

7.1.2. Delayed LM incorporation with heuristic boundary optimization

This search technique appears somewhat hybrid in the sense that it borrows from both the
re-entrant tree and start-synchronous tree methods to reach the highest efficiency. The gen-
eral idea is to assume that the word boundary depends on a narrower context (<m words),
possibly phonetically motivated, such that the word expansion and boundary timeτ obtained
by extending the best theory(ies) can be shared among otherm-gram word histories. It is
understood that for these alternative phrases the LM will be appliedafter the word expansion
has been completed.

This fits with the concept of delayed LM incorporation (Steinbiss, 1991) which has been
shown to significantly reduce the active search space by eliminating redundantm-gram word
copies. An example of such strategy is given by the word pair approximation (Schwartz &
Austin, 1991; Aubert & Ney, 1995) which assumes that the word boundary depends only on
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the current and immediate predecessor words i.e.

τ = f (v, wt ; t).

LM re-scoring can be subsequently performed with a higherm-gram order (m > 2) at very
little cost, provided the word hypotheses have been stored in a lattice-like structure based on
the word-pair optimized boundaries. As described inSteinbiss(1991) andSeide(2001), this
can actually be achieved in one single decoding pass thus taking advantage of them-gram
LM to get a more focused search. In practice, the word-pair approximation has been shown
to work quite well but for some very short words like one-phoneme function words (Aubert
& Ney, 1995; Ortmannset al., 1997).

This leads to the idea that the word boundary should actually be made dependent on
phoneme historiesrather than on linguistic word sequences. InLi et al. (1996), the esti-
mation of word and phone boundary times has been investigated in the context of a mono-
tone graph search strategy, using either a one-phone or a two-phone look-ahead assump-
tion. Based on U.S.-English experiments, the authors conclude that triphone modelling for
speaker-independent recognition can be supported by the two-phone approximation, the one-
phone case leading to unacceptable inaccuracies.

A similar approach has been recently pursued inSeide(2001) in the framework of a time-
synchronous re-entrant tree decoder, where aphone-history approximationis introduced,
assuming that the optimal word boundary only depends on the lastp phones of a given active
path. Experiments have been carried out for Mandarin recognition using half-syllable units
and for U.S.-English as well, based on non-cross-word triphones. For LVCSR of Mandarin
Chinese, a relative reduction of the search space (in terms of active state hypotheses) in the
range of 60–80% has been achieved at no loss of accuracy, which is partly attributed to the
structural properties of Chinese as a mono-syllabic language. For U.S.-English on the North
American English test-sets, the reduction appears to be in the range of 40–50%, showing
clearly the potential offered by appropriate word boundary heuristics to speed-up anm-gram
search process.

7.2. Acoustic look-ahead pruning

7.2.1. Principle of a fast acoustic match

The general idea is to pay attention to the acoustic content of the incoming signal (ahead
of current hypothesis’ time) foreliminating as many unpromising candidates as possible,
before extension. Provided this preselection is achieved cheaply and reliably, the detailed
and expensive knowledge sources can be applied to fewer hypotheses leading to significant
speed-ups while maintaining the recognition accuracy. Hence, decoding is achieved in two
steps based on some prior “fast match”.

Cutting down the search complexity by means of fast match techniques has been consid-
ered in the framework of several decoding architectures with rather distinct solutions. In the
IBM stack decoder (Novak & Picheny, 1999), a fast acoustic match provides a short list of
wordcandidates to extend the most likely theories. Lexical constraints encoded in a prefix tree
are used to carry out this fast selection. In the BBN approachNguyen and Schwartz(1998),
relying on the forward-backward search strategy, the fast match component performs a first
decoding pass using some linguistic knowledge as well, the results of which are exploited
to prune a second detailed pass based oncomplete sentencelikelihood estimations. These
examples, together with Section7.2.2, show the wide range of time intervals and knowledge
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sources that are involved in different applications of the fast match principle. All these situa-
tions, however, have the use of simplified acoustic models with reduced context dependencies
in common.

7.2.2. Phoneme look-ahead in time-synchronous decoders

Phoneme look-ahead pruning has been used for a long time in time-synchronous decoders
(Ney et al., 1992). As shown in Fig.14, it consists of estimating the likelihood of producing
a given phone in a short interval ahead of the current time-index, to predict which phonetic
arcs in the prefix tree are likely extensions. Given the lexical prefix tree structure, the pho-
netic transitions are indeed the most convenient place to apply a fast acoustic match possibly
working in conjunction with the LM look-ahead scores (Aubert & Blasig, 2000). However,
working at the phone level clearly limits the selection capabilities since only short-range lex-
ical or linguistic constraints can be taken into account and the look-ahead time interval must
be kept relatively short.

The phonetic look-ahead scores are usually computed with coarse acoustic models as well
as with simplified time-alignments (Ortmannset al., 1996; Alleva, 1997) such that the admis-
sibility of this pruning cannot be guaranteed. InAubert and Blasig(2000), such a technique
has been evaluated for broadcast news transcriptions and the search space could be reduced
by a factor of more than two at almost no degradation. Although there is an obvious tradeoff
between speed and accuracy, this reduction appears quite appreciable just by looking ahead
of one phonetic arc and less than one-tenth of a second of speech.

8. Some experimental evidence in large vocabulary decoders

The problem of evaluating and comparing different decoding algorithms is addressed by first
discussing which experimental methodology is the most suitable and by looking at the results
achieved by three state-of-the-art large-vocabulary recognition systems during the DARPA
evaluation held in December 1999.
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8.1. Specification and evaluation of a “real” decoder

When implementing a practical large-vocabulary decoder, the challenge is—obviously—to
get the highest accuracy from the knowledge sources at the lowest costs in terms of memory
space and computational time.

As already mentioned, the potential size of the search space prevents from applying any
“brute force” method (exhaustive search) and requires the use of complex algorithms in
conjunction with powerful heuristics including the usual beam pruning. Consequently, for
any LVCSR task, finding theoptimalstate sequence cannot be guaranteed and there is always
a tradeoff between accuracy and computational costs. Note, however, that the so-called search
errors normally represent a very small percentage (≈1 or 2%) of all errors that are mainly
caused by using imperfect models and knowledge sources.

For evaluating a given decoder, it is important to consider several working conditions i.e.
distinct degrees of pruning and not just one fixed setup. If, for example, the baseline system
has been run with conservatively large pruning thresholds, any search improvement is likely
to provide a dramatic speed up effect! Along this line, it is extremely useful to establish
the characteristic curve of a decoder, showing the recognition accuracy as a function of the
computational resources over awide rangeof operating conditions. Typically, this leads to a
curve showing the word error rate against the real-time factor and the slope of this curve gives
some indication about the efficacy of the pruning strategies. InGauvain and Lamel(2000),
such an evaluation has been conducted on broadcast news data, both for single and multiple
pass decoding. The influence of the acoustic model size and of the LM order has also been
investigated regarding the performance that can be achieved under restricted computational
resources.

8.2. Results of Hub-410× real-time systems

Within the framework of DARPA evaluations, “Hub-4” stands for automatic transcriptions of
broadcast news recordings as they are found in the real radio or television media world. For
one optional test case, the participants have been requested to run their system on a single
processor below the 10× real-time limit

Table I summarizes the main lines of the results produced in December 1999 by three
groups having contributed to this 10× real-time “spoke”. It has to be emphasized that these
systems are quite elaboratemulti-passdecoders including unsupervised acoustic adaptation
and higher order LM re-scoring. The first pass however is the most CPU demanding and
here too, the three decoders considered in the table are quite different, being representative of
three distinct classes of methods. The first two systems include a fast match algorithm while
the third one rests upon a standard time-synchronous dynamic-expansion decoder based on
the re-entrant tree method. In all three cases the vocabulary size is about 64 K words.

Referring to TableI, the following comments can be made:

• the final word error rates are quite similar differing by only±2% relative;
• some small differences in memory needs may be observed with a slight advantage for

the asynchronous “time-first” approach.

Looking at these results, it may be argued that there is no evidence of a clearly “dominant”
decoding method. Indeed, it might have been expected that the constraint imposed on the
real-time factor would have led to larger differences in accuracy which has not been the case,
so far. But the main conclusion, admittedly, is that each site has been successful at developing
a multiple pass system based on their own algorithmic expertise.
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TABLE I. DARPA Dec’99 Hub-4 results for 10× real-time
broadcast news systems (DARPA, 2000) FM stands for fast

(acoustic) match and WER for word error rate in %

Group 1st-pass Hardware WER %
algorithm specifics final

BBN Fw-Bw Search Pentium III 600 MHz 17·3%
Time-Sync FM <1 GB RAM

IBM Asynchronous RS/6000, 320 Mips 17·6%
Stack+ FM 512 MB RAM

LIMSI Time-Synchr. Compaq XP 500 MHz 17·1%
Dyn. Network Peak 800 MB

8.3. The successful “trilogy” in automatic speech recognition

The explanation for not observing significant performance departures among quite different
decoders may be found in the simple observation that large vocabulary decoding is a complex
problem that cannot be solved with a single or unique algorithm. Given the many interde-
pendencies existing in a large vocabulary continuous speech system, it seems that the best
performing systems are almost always the results of a so-calledsuccessful trilogy, namely,
that they are the careful outcome of the following contributions:

1. a number of powerful algorithms (not just one!);
2. a clever design and implementation cooperative with the hardware;
3. a careful tuning of all heuristics (pruning thresholds, penalties, scaling factors).

9. Conclusion

In attempting to summarize this short tour of decoding techniques, the following pros and
cons can be suggested:

(1) static network expansion using WFST appears quite general, leads to a very flexible
decoding environment and integrates CW phonetic contexts as well as grammar spread-
ing with almost no overhead costs. However, the feasibility of this approach relies
strongly on current model sparsities which might be a handicap, especially regarding
the LM;

(2) time-synchronous dynamic search achieves very efficient pruning and recombination
in a conceptually simple and unified framework. The handling of LM word copies
has proven surprisingly efficient. Integrating CW models is however challenging if not
tricky and does not seem to “scale” easily to larger phonetic contexts. This method
might also take advantage of exploiting some of them-gram sparsities;

(3) stack decoders require assembling a number of complex algorithms and, due to less
favourable pruning conditions, may be more influenced by fast match performance.
However, they offer an ideal decoupling with respect to the LM interface and are well-
suited for integrating longer contextual constraints of whatever nature.

Finally, without guessing at any kind of predictions about what could be tomorrow’s decoders,
here are a number of avenues that are currently being studied and appear definitely worth pur-
suing:
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• hybrid expansion strategies: combining a static expansion of certain knowledge sources
with an “on the fly” dynamic integration of the others is attractive since the acoustic–
phonetic constraints are the most cumbersome to implement efficiently and the language
constraints are the most memory intensive. However, other combinations are also being
considered to take advantage of the massivem-gram sparsities;

• increasing importance of word-graphs: given the interest in proposing numerous sente-
nce alternatives and the growing importance of confidence measures related to word
posterior probabilities, the backbone of a LVCS decoder could become a word-graph
data structure, besides replacing the necessary back-pointers to retrieve whole sentence
hypotheses;

• integration of very long range syntactical constraints: given the limitations of current
m-gram LM, a good deal of work is being spent on more syntactical approaches imply-
ing much longer contextual dependencies, beyond trigram or fourgram. These in turn
will stimulate new search heuristics to benefit from the LM predictive power in the
earliest decoding stage.

I would like to thank my colleagues at Philips Research in Aachen for their support, especially Christoph
Neukirchen, Hans Dolfing and Matthew Harris, with whom I had many enlightening discussions while
preparing this overview. It is also my pleasure to acknowledge the contribution of Frank Seide (Philips
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