Conditional Models
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Conditional Models

T = (X1,¥1), (X2,¥2), - -+ (Xn; ¥n)

Generative (joint) models(like HMMs) seek to
maximize the following objective:
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Conditional models optimize
the following conditional objective
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Why Conditional Models?

» Conditional models have the following property:
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* Intuitively, we don’t “waste” effort modeling
the marginal distribution of x

* HMMs have restrictive expressive power because
they try to model x with a simple/tractable
model.



HMM recap

 Recall HMMs:
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Posterior Marginals

* Marginal inference question for HMMs

— Given X, what is the probability of being in a
state g at time 1?

p(T1,..., T, Y; = q | Yo = START) X
P(Tiv1,-- x| |y = q)
— Given x, what is the probablllty of transitioning

from state g to r at time 1?
p(z1,...,2;,Y; = q | yo = START) X
n(q = 7) X y(r | zip1)x
P(Zit2;s - T|x| | Yit1 =T)



Posterior Marginals

* Marginal inference question for HMMs

— Given X, what is the probability of being in a
state g at time 1?

p(Tig1, .. x| Y = q)

— Given x, what is the probablllty of transitioning
from state g to r at time 1?

(g — 1) X y(rd )X
p(aji—l—Qa ey Lx| ‘ Yi+1 — T)




Forward Algorithm Recurrence
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Forward Chart
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i=1

ay(q) = p(START, 1, ..., T4, Yt = q)
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Forward Chart

ay(q) = p(START, 1, ..., T4, Yt = q)



Posterior Marginals

* Marginal inference question for HMMs

— Given X, what is the probability of being in a
state g at time 1?

p(T1,...,Ti,Y; = q | Yo = START) X

— Given X, whatms e probability of transitioning

from state g to r at time i?
p(T1,...,Ti,Y; = q | Yo = START) X
(g = 7) X y(r{ @ig1)X




Backward Algorithm

 Start at the goal node(s) and work
backwards through the hypergraph

* What is the probability in the goal node
cell?

 What if there is more than one cell?
« What is the value of the axiom cell?



Backward Recurrence



Backward Chart
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Forward-Backward

* Compute forward chart
a¢(q) = p(START, T1,. .., T4, Yt = q)
 Compute backward chart

Bi(q) = p(Ti41,-..,T)x|, STOP | y; = q)
What is ay(q) x B:(q) ?




Forward-Backward

* Compute forward chart
a¢(q) = p(START, T1,. .., T4, Yt = q)
 Compute backward chart

Bi(q) = p(Ti41,-..,T)x|, STOP | y; = q)
What is ay(q) x B:(q) ?

p(x,y: = q) = as(q) X Be(q)




Edge Marginals

* What is the probability that x was
generated and g -> r happened at time t?

p(x1,...,2;,Y; = q | Yo = START) X
n(q— 1) xy(rdziz)X
p($i+2> c ooy L x| | Yi+1 = 7“)



Edge Marginals

* What is the probability that x was
generated and g -> r happened at time t?

p(x1,...,2;,Y; = q | Yo = START) X
(g —r) X y(rd @ig1)x

p($i+2> c ooy L x| | Yi+1 — 7“)

ot (q) X

(g — 1) XY (rd Tip1) X
by 1(7‘)




Forward-Backward




MEMMs

* Back to conditional modelling:

W@i > I

» Limitation: you cannot condition on the
future, the probability p(y | x) still factors
into condltlonally mdependent steps




MEMM Structure

* MEMMs parameterize each local
classification decision with a “conditional
maximum entropy model” - more commonly
known as a multiclass logistic regression
classifier

expw ' f(yi, X, 4, Yi—1)

p(yi | X%, yi—1;w) = Zy/eA expw ' f(y',%,4,Yi—1)
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p(y | xw) = [] oy | %, 5115 0)
1=1



Learning MEMM Params

* The training objective is the conditional
likelihood of all of the local classification

decision|15|
L = Z Zwa(yiaX,i,yi—l)—108;Z(X>73>Z/z'—1;w)
(x,y)€T 1=1
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Conditional Random Fields

* Problems with MEMMs

— What if we want to define a conditional
distribution over trees? Or graphs? Or...?

— Label bias

— What if we want to define features like
v {-1}=DT &y {+1} =VB



Solving Label Bias

* Intuitively, we would like each feature to
contribute globally to the probability
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Globally Normalized Models

expw ' g(x,y)

p(Y\X;w)ZZ

v' ey, EXP w'g(x,y’)

Z(x;w)= Y expw!' g(x,y’)
y' €YVx



Conditional Random Fields

* CRFs (Lafferty et al., 2001) are a special
form of globally nhormalized models

— They solve the label bias problem
— They can be applied to arbitrary structures

— They can use arbitrary features®

— They generalize the notion of the logistic
regression to cases where the output spaces has

structure



CRFs for Sequence Labels
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Comparison to MEMMs

 CRF
CxXPp S:f‘;i‘l wa(yia X, Z.v yi—l)
ply | x;w) = x| T / N
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* MEMM
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CRFs: Sum of their Parts

* A CRF is a globally normalized model in
which g decomposes into local parts of the
output structure

Hi (X, Y) — <y7,7 X, i? y’i—1>

#parts(x)

g(x,y)= ) f(lli(x,y))



Training CRFs

* Maximum likelihood estimation is
straightforward, conceptually

€Xp S:l,}i‘l w' f(yi, X, 4, yi—1)

p(y | X;w) = . | .
ZY’€A|X| CXP Zl,:‘l wa(y;,? Xy 1, yqu_l)
#parts(y)
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Efficient Inference

* |f the parts factor into a sequence or a
tree, then you can use polytime DP
algorithms to
— Solve for the MAP setting of Y
— Compute the partition function

— Compute posterior distributions over the settings
of the variables in the parts



Forward Chart




A Word About Features

* Less “local” features require bigger part
functions

— This has a direct impact on the runtime of inference
algorithms

— But, in conditional models, you get to see the whole
source “for free”

* Features are generally constructed by domain
experts
— They often have the form of templates %yi_suf(%xi)
* Feature learning or induction is becoming
increasingly important
— Conjunctions of basis features
— Vector space (“distributed”) representations



