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Phrase Structure Parsing

= Phrase structure parsing
organizes syntax into
constituents or brackets

= |n general, this involves
nested trees

" Linguists can, and do,
argue about details

= Lots of ambiguity

= Not the only kind of
syntax...
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Constituency Tests

= How do we know what nodes go in the tree?

= Classic constituency tests:

= Substitution by proform
= Question answers

= Semantic gounds
= Coherence
= Reference
= |dioms

= Dislocation
= Conjunction

S
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ate DT NN with DT NN

the cake a spoon

" Cross-linguistic arguments, too
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Conflicting Tests

= Constituency isn’t always clear
= Units of transfer:

= think about ~ penser a
= talk about ~ hablar de

= Phonological reduction:
= |willgo —=I'll go
= | want to go — | wanna go

= ale centre — au centre

= Coordination

= He went to and came from the store.

NPg,
DT NN PP
| | — T
The velocity IN NPy

of the seismic waves
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La vélocité des ondes sismiques



Classical NLP: Parsing
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= Write symbolic or logical rules:

Grammar (CFG) Lexicon
ROOT — S NP — NP PP NN — interest
S—=NPVP VP — VBP NP NNS — raises
NP — DT NN VP — VBP NP PP VBP — interest
NP — NN NNS PP — IN NP VBZ — raises

= Use deduction systems to prove parses from words
= Minimal grammar on “Fed raises” sentence: 36 parses
= Simple 10-rule grammar: 592 parses
= Real-size grammar: many millions of parses

= This scaled very badly, didn’t yield broad-coverage tools



Ambiguities



Eﬁ Ambiguities: PP Attachment
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Attachments

= | cleaned the dishes from dinner

" | cleaned the dishes with detergent

= | cleaned the dishes in my pajamas

= | cleaned the dishes in the sink
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Syntactic Ambiguities |

" Prepositional phrases:
They cooked the beans in the pot on the stove with handles.

= Particle vs. preposition:
The puppy tore up the staircase.

* Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

" Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.



Syntactic Ambiguities |
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= Modifier scope within NPs
impractical design requirements
plastic cup holder

= Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

= Coordination scope:
Small rats and mice can squeeze into holes or cracks in the
wall.
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Dark Ambiguities

" Dark ambiguities: most analyses are shockingly bad
(meaning, they don’t have an interpretation you can get

your mind around) ROOT
|
S
This analysis corresponds to | I\F /\P\ | |
the correct parse of " DT VB7 vp ;o
L - . . | ” | | /\
This will panic buyers ! This & Ve NP
| |
panic ~ NN
buying

= Unknown words and new usages

= Solution: We need mechanisms to focus attention on the
best ones, probabilistic techniques do this



PCFGs



E&Probabilisﬁc Context-Free Grammars

= A context-free grammaris atuple<N, T, S, R>

= N :the set of non-terminals

= Phrasal categories: S, NP, VP, ADJP, etc.

= Parts-of-speech (pre-terminals): NN, JJ, DT, VB
= T:the set of terminals (the words)
= S:the start symbol

= Often written as ROOT or TOP

= Not usually the sentence non-terminal S

= R:the set of rules
= OftheformX—=Y, Y, .. Y, withX,Y,EN
= Examples:S—= NP VP, VP — VP CCVP
= Also called rewrites, productions, or local trees

= A PCFG adds:
= A top-down production probability per rule P(Y, Y, ... Y, | X)
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Treebank Sentences

( (S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar increases)

(PP by
(NP other Tlenders))

(PP against
(NP Arizona real estate loans)))))

(S-ADV (NP-SBJ *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC 1n
(NP that market))))))
)



Treebank Grammars
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= Need a PCFG for broad coverage parsing.
= Can take a grammar right off the trees (doesn’t work well):

ROOT
é ROOT — S
T S — NP VP.

NP

VP .
CX ‘ NP - PRP
PRP VBD ADJP .

o VP — VBD ADJP
He  was 1]

right

= Better results by enriching the grammar (e.g., lexicalization).
= Can also get state-of-the-art parsers without lexicalization.



E{i Treebank Grammar Scale

" Treebank grammars can be enormous
= As FSAs, the raw grammar has ~10K states, excluding the lexicon
=  Better parsers usually make the grammars larger, not smaller
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Chomsky Normal Form

" Chomsky normal form:
= Allrules oftheformX—=YZorX —=w

= |n principle, this is no limitation on the space of (P)CFGs
= N-ary rules introduce new non-terminals

VP

VP
VBD NP PP PP [pr ] \
VBD NP b -

= Unaries / empties are “promoted”
" |n practice it’s kind of a pain:

= Reconstructing n-aries is easy

= Reconstructing unaries is trickier

= The straightforward transformations don’t preserve tree scores
= Makes parsing algorithms simpler!



CKY Parsing
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A Recursive Parser

bestScore(X,1,7],s)
if (j = i+1)
return tagScore (X,s[1])
else
return max score (X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k, j)

= Will this parser work?
= Why or why not?
= Memory requirements?
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A Memoized Parser

= One small change:

bestScore(X,1, 7], s)
if (scores[X][i][j] == null)
if (J = i+1)

score = tagScore(X,s[i])

else
score = max score (X->YZ) *
bestScore(Y,1,k) *
bestScore(Z,k, j)
scores[X] [1][]J] = score
return scores[X][1][]]



E& A Bottom-Up Parser (CKY)

= (Can also organize things bottom-up

bestScore (s) X
for (i : [0,n-1]) /”\
for (X : tags[s[i]]) Y Z

score[X] [1][i+1] = /\/\
tagScore (X,s[1])

for (diff : [2,n])
for (i : [0,n-diff])
j =1 + diff
for (X->YZ : rule)
for (k : [i+1, 3-11])
score[X] [1][]J] = max score[X][i][]],
score (X->YZ) *
score[Y] [i] [k] *
score[Z] [k] []]

i K
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Unary Rules

= Unary rules?

bestScore(X,1,7,s)
if (j = i+1)
return tagScore (X,s[1])
else
return max max score (X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k, j)
max score (X->Y) *

bestScore (Y, i, j)
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CNF + Unary Closure

= \We need unaries to be non-cyclic
= Can address by pre-calculating the unary closure

= Rather than having zero or more unaries, always have

exactly one
VP
SBAR
VP —
VBD NP D | S — |
— NP | VP
DT NN — VP
DT NN

= Alternate unary and binary layers
= Reconstruct unary chains afterwards



Alternating Layers

bestScoreB (X,i,j, s)
return max max score (X->YZ) *
bestScoreU(Y,i,k) *
bestScoreU(Z,k, Jj)

bestScoreU(X,i,j, s)
if (3 i+l)

return tagScore(X,s[i])

else
return max max score (X->Y) *
bestScoreB(Y,1i,])



Analysis
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Memory

= How much memory does this require?
= Have to store the score cache
= Cache size: |symbols|*n? doubles

= For the plain treebank grammar:
= X~ 20K, n=40, double ~ 8 bytes =~ 256MB
= Big, but workable.

= Pruning: Beams
= score[X][i][j] can get too large (when?)

= Can keep beams (truncated maps scorel[i][j]) which only store the best few
scores for the span [i,j]

"  Pruning: Coarse-to-Fine
= Use a smaller grammar to rule out most X[i,j]
= Much more on this later...
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Time: Theory

= How much time will it take to parse?

* For each diff (<=n)

" Foreachi(<=n) X
= ForeachruleX—=YZ /\
= For each split point k Y Z
Do constant work /\ /\
i K j

* Total time: |rules|*n3

» Something like 5 sec for an unoptimized parse of a
20-word sentence
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Time: Practice

= Parsing with the vanilla treebank grammar:

360

~ 20K Rules

300
(not an

/ optimized

180 parser!)

N
N
=)

120

Avg. Time (seconds)

Observed
| exponent:
0 3.6
0 10 20 30 40 50
Sentence Length

o
o

= Why's it worse in practice?
= Longer sentences “unlock” more of the grammar
= All kinds of systems issues don’t scale



Same-Span Reachability

ADIP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP
WHNP

SBARQ D
CWHADVPD
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Example: NP CC

Rule State Reachability

@ - - ——mm N et .o 1Alignment

@c-——-—-———=—=——=— === rQ——— Qe ——— — — — — -@ N AIignments

= Many states are more likely to match larger spans!



Efficient CKY
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= | ots of tricks to make CKY efficient

= Some of them are little engineering details:

= E.g., first choose k, then enumerate through the Y:[i,k] which are
non-zero, then loop through rules by left child.

= Optimal layout of the dynamic program depends on grammar,
input, even system details.
= Another kind is more important (and interesting):
= Many X[i,j] can be suppressed on the basis of the input string

= We'll see this next class as figures-of-merit, A* heuristics, coarse-
to-fine, etc



Agenda-Based Parsing
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Agenda-Based Parsing

» Agenda-based parsing is like graph search (but over a
hypergraph)
= Concepts:

= Numbering: we number fenceposts between words

= “Edges” or items: spans with labels, e.g. PP[3,5], represent the sets of
trees over those words rooted at that label (cf. search states)

= A chart: records edges we’ve expanded (cf. closed set)
= An agenda: a queue which holds edges (cf. a fringe or open set)

PP

critics write reviews with computers
0 1

N
W



Word Items
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" Building an item for the first time is called discovery. Iltems go
into the agenda on discovery.

= Toinitialize, we discover all word items (with score 1.0).

AGENDA
critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]
o o o o o o
0 1 2 3 4 )

critics write reviews with computers
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= When we pop a word item, the lexicon tells us the tag item
successors (and scores) which go on the agenda

Unary Projection

critics[0,1]  write[1,2] reviews[2,3]  with[3,4] computers[4,5]

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]
critics write reviews ® with ® computers ®
0 1 2 3 9

critics write reviews with computers



ltem Successors
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= When we pop items off of the agenda:
= Graph successors: unary projections (NNS — critics, NP — NNS)

Y[i.jl with X — Y forms X]i,]]

Hypergraph successors: combine with items already in our chart

Y[i.jl and Z[j,k] with X — Y Z form X[i,k]

Enqueue / promote resulting items (if not in chart already)
Record backtraces as appropriate X
Stick the popped edge in the chart (closed set)

= (Queries a chart must support: Y Z

= |s edge X[i,j] in the chart? (What score?)
= What edges with label Y end at position j? /\/\

What edges with label Z start at position i?
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NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2]
VP[1,3] PP[3,5] ROOT[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOTIO0,5]
ROOT

An Example

critics write reviews with computers
0 1 2 3 4 )



%

Empty Elements

= Sometimes we want to posit nodes in a parse tree that don’t
contain any pronounced words:

| want you to parse this sentence

| want [ ] to parse this sentence

= These are easy to add to a agenda-based parser!
= For each position i, add the “word” edge ¢[i,i]
= Add rules like NP — € to the grammar
= That’s it!

NP VP

v @O

like to parse 4 empties
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=  With weighted edges, order matters

= Must expand optimal parse from
bottom up (subparses first)

= CKY does this by processing smaller
spans before larger ones

= UCS pops items off the agenda in order
of decreasing Viterbi score

=  A* search also well defined

UCS / A*

=  You can also speed up the search
without sacrificing optimality
= (Can select which items to process first

= Can do with any “figure of
merit” [Charniak 98]

= |f your figure-of-merit is a valid A*
heuristic, no loss of optimiality [Klein
and Manning 03]
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(Speech) Lattices

= There was nothing magical about words spanning exactly
one position.

= When working with speech, we generally don’t know
how many words there are, or where they break.

= \We can represent the possibilities as a lattice and parse
these just as easily.

lvan

eyes

./\‘ awe
|

saw ‘ve van




Learning PCFGs



E& Treebank PCFGs

= Use PCFGs for broad coverage parsing

[Charniak 96]

= Can take a grammar right off the trees (doesn’t work well):

ROOT
Sl) ROOT — S 1
e S — NP VP. ]
NP VP .
| N > NP — PRP 1
PRP VBD ADJP .
| | VP — VBD ADJP 1
He  was 1]
|
right
Model F1

Baseline 72.0




E& Conditional Independence?

S
NP VP
I —
PRP VBD NP
| I — T

She heard DT NN
| |
the noise

" Not every NP expansion can fill every NP slot
= A grammar with symbols like “NP” won’t be context-free
= Statistically, conditional independence too strong
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Non-Independence

" |[ndependence assumptions are often too strong.

All NPs NPs under S NPs under VP
23%

21%

11%
° 9%

.. 6%

NPPP DTNN PRP NPPP DTNN PRP NPPP DTNN PRP

4%

= Example: the expansion of an NP is highly dependent on the
parent of the NP (i.e., subjects vs. objects).

= Also: the subject and object expansions are correlated!
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Grammar Refinement

= Example: PP attachment

VP NP

TNl T T

They

raised

a  point of order
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Grammar Refinement

PRP VBD NP-Abkse
She heard DT NN
| |
the noise

= Structure Annotation [Johnson ’98, Klein&Manning '03]
= Lexicalization [Collins 99, Charniak "00]
= Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]



Structural Annotation



Ef@ The Game of Designing a Grammar

B

NP”S VP
| _—
PRP VBD NP"VP
| | T

She heard DT NN
| |
the noise

» Annotation refines base treebank symbols to
improve statistical fit of the grammar

= Structural annotation



}f@ Typical Experimental Setup

= Corpus: Penn Treebank, WSJ

Training: sections  02-21

Test: section 23

" Accuracy — F1: harmonic mean of per-node labeled
precision and recall.

" Here: also size — number of symbols in grammar.



Vertical Markovization
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, Order 1 \70 Order 2
= Vertical Markov
order: rewrites @ /SR’OOT\
depend on past & m NBE | ups .
ancestor nodes. ] | | N |
PRP VBD ADJP . PRP VBD ADVP'VP .
(cf. parent | | A | | A
annotation ) He was right He  was right
79% 25000
78%
s B 20000
76% g 15000
;i‘Zo 1 £ 10000 -
% - /2]
739 | 5000 -
72% - 0 -
1 2v 2 3v. 3 1 2v 2 3v 3

Vertical Markov Order Vertical Markov Order
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Horizontal Markovization

Order 1

B

NNP NNP NNP NNP

74%
73%

72% A
1% A
70% -

®1v2@

Horizontal Markov Order

NP—... NNPe

P

NNP NP—...NNPe

NNP

12000

Order ©© <

NP

RS

NNP w
NNP NP—-NNP NNEks

_,,_T_

9000

6000

Symbols

3000

0

_I|I[
1 2v 2 <<Sgb

Horizontal Markov Order
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Unary Splits

" Problem: unary RO|OT
rewrites used to S
T
transmute NP VP .
categories so a I
. _ ofe %\
hlgh prObablllty Rt’U!’I‘II.M.’ wlas NP , PP
rule can be used. | | N
QP . VBG NP
O~ |
. $ 444.9 million including  net interest
s Solution: Mark :
nary rewri
lSJit:SyWi?[h Ltje Annotation F1 Size
Base 77.8 7.5K

UNARY 78.3 |8.0K
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Tag Splits

" Problem: Treebank tags /VP\
are too coarse. TO VP
|
to VB/\SBAR
= Example: Sentential, PP, o ‘N”TNT /3\
and other prepositions if N|P VlP
are all marked IN. NN  VBZ
| |
advertising works
= Partial Solution:
= Subdivide the IN tag. Annotation F Size
Previous /8.3 |[8.0K

SPLIT-IN 80.3 |8.1K




Eﬁ A Fully Annotated (Unlex) Tree

ROOT

S"ROOT-v

m@@o <~
N o
“  DT-U"NP VBZ‘BE"VP NP*VP-B ! ”
| P
This IS NN'NP NN'NP

R

panic ~ buying
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Some Test Set Results

Parser LP LR F1 CB 0CB

Magerman 95 849 |84.6 |84.7 |1.26 |56.6

Collins 96 86.3 |85.8 |[86.0 |1.14 |59.9

Unlexicalized [86.9 |85.7 |86.3 [1.10 |60.3

Charniak 97 |87.4 |87.5 |87.4 |1.00 |62.1

Collins 99 88.7 |88.6 |(88.6 |0.90 |67.1

= Beats “first generation” lexicalized parsers.
" Lots of room to improve — more complex models next.



Efficient Parsing for
Structural Annotation
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Grammar Projections

NP
—> Coarse Grammar — Fine Grammar ) \
br N
S SROOT J)/ \ ~
NP VP , NP’'S VP'S . 7\
N N B F Y
PRP VBD ADJP . PRP VBD ADVP'VP .
AN A
He was right He was right X f
y N\
X

NP = DT@ ( NPAS = DTANP N’[...DT]ANP

¥ — X\

Note: X-Bar Grammars are projections with rules like XP > Y X or XP > X' Yor X' > X

——
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Coarse-to-Fine Pruning

For each coarse chart item X[i,j], compute posterior probability:

P (X,1,7) - Pour(X, 1, 7)
P (root,0,n)

< threshold

E.g. consider the span 5 to 12:

coarse:

refined:




Eﬁ Computing (Max-)Marginals




Inside and Qutside Scores
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" You can also speed up the
search without sacrificing
optimality

" For agenda-based parsers:

= Can select which items to
process first

= Can do with any “figure of
merit” [Charniak 98]

= |f your figure-of-meritis a
valid A* heuristic, no loss of
optimiality [Klein and
Manning 03]

Pruning with A*




A* Parsing

Estimate SX SXL SXLR TRUE
Summary (1,6,.NP) (1,6,NP,VBZ) (1,6, NP,VBZ., ") (entire context)
S S
| |
VP VP S
. . ——— — T—— ———
Best Tree S VBZ NP PP VBZ NP S , NP VP .
e T — —_— e | I —
PP NP V. N NP NP , CC NP VP PRP VBZ NP
T P | — ——— — T T N
IN NP | DT JI NN VBD DT NNP NNP NNP NNP ‘ ‘ DT IJ NN VBZ NP ‘ ‘ DT NN
| | | | | | | | | | | | | | | | | |
? [NP[? 2 2 2 2 VBZ[NP] 2 2 2?2 2?2 2?2 ? VBZ[NP|, ? ? ? ? ? VBZ [NP] , PRP VBZ DT NN .
Score —11.3 —13.9 —15.1 —18.1




Lexicalization



}fi The Game of Desighing a Grammar

PRP VBD NP-noise
| | —
She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Structural annotation [Johnson '98, Klein and Manning 03]
» Head lexicalization [Collins 99, Charniak '00]



Problems with PCFGs

S S
/\ /\
NP VP NP VP
/\ /\ /\ !/\
DT NNS VP PP D‘T N1|\T5 “TD /N_P\
‘ ‘ /\ /\ The children ate NP PP
The children VBD NP IN NP /\
| AN | N DT NN IN NP
ate DT NN with DT NN ‘ ‘ ‘ /\
| | ‘ ‘ the cake with DT NN
the cake a spoon | ‘

a spoon

= |f we do no annotation, these trees differ only in one rule:
= VP—VPPP
= NP — NPPP

= Parse will go one way or the other, regardless of words
= We addressed this in one way with unlexicalized grammars (how?)
= |Lexicalization allows us to be sensitive to specific words
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Problems with PCFGs

NP NP

/‘\ NP/\PP

NP CC NP S
NNS

TN | | IN NP

NP PP and NNS d| | |
| TN | 08 in

NNS IN NP cats NP CC NP

| | | | |

dolgs m  NNS NNS and NNS

| | |

houses houses cats

= \What's different between basic PCFG scores here?
= What (lexical) correlations need to be scored?



Lexicalized Trees

Add “head words” to
each phrasal node

= Syntactic vs. semantic
heads

= Headship not in (most)
treebanks

= Usually use head rules,
e.g..

= NP:
= Take leftmost NP
= Take rightmost N*
= Take rightmost JJ
= Take right child

= VP:
= Take leftmost VB*
= Take leftmost VP
= Take left child

NP VP
N TN
ll!e lav.'lyer I /\
questioned DT NN
tllxe winlxess
Y
S(questioned)
NP(lawyer) VP(questioned)
DT(the) NN(lawyer) ] /\
| | Vt(questioned) NP(witness)
the lawyer |
questioned

DT(the) NN(witness)
| |

the witness



Eﬁ Lexicalized PCFGs?

= Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

= Never going to get these atomically off of a treebank

= Solution: break up derivation into smaller steps

VP (saw) VP (saw) VP (saw) VP (saw)

— — T I

VBD (saw) VBD (saw) {np-c( )} VBD (saw) NP-C( ) NP( ) VBD (saw) NP-C(her) NP (today)
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Lexical Derivation Steps

= A derivation of a local tree [Collins 99]

VP (saw)

/ Choose a head tag and word

VBD (saw)

VP (saw)

/ Choose a complement bag

VBD (saw) {Np-C( )}

VP (saw)

m Generate children (incl. adjuncts)

VBD (saw) NP-C( ) NP( )

VP (saw)

m Recursively derive children

VBD (saw) NP-C(her) NP(today)



Lexicalized CKY

%

(VP->VBD. . .NP °) [saw] X[h]

/\

(VP->VBD °) [saw] NP [her]

Y[h] Z[h

bestScore (X,i,j,h) /////ﬁ\\\///ﬁi\\\

if (j = i+1) _
. | h Kk h’
return tagScore (X,s[1])

else
return

maﬁmgggmscore(X[h]—>Y[h] Z[h"]) *
bestScore(Y,i,k,h) *
bestScore(Z,k,j,h’)

k,h;rll?,icyzscore(X[h]—>Y[h’] Z[h]) *

bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)



Efficient Parsing for
Lexical Grammars
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Quartic Parsing

= Turns out, you can do (a little) better [Eisner 99]

X[h] X[h]
7\
i h k h’ j i h k

=  Gives an O(n?) algorithm
= Still prohibitive in practice if not pruned
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= The Collins parser prunes with per-
cell beams [Collins 99]
= Essentially, run the O(n>) CKY

= Remember only a few hypotheses for
each span <i,j>. X[h]

= |f we keep K hypotheses at each span,
2
then we do at most O(nK?) work per Yih] Z[h

span (why?) f
= Keeps things more or less cubic (and in /\ /\

practice is more like linear!)
i h Kk h’

Pruning with Beams

= Also: certain spans are forbidden
entirely on the basis of punctuation
(crucial for speed)



Pruning with a PCFG

%

= The Charniak parser prunes using a two-pass, coarse-
to-fine approach [Charniak 97+]

= First, parse with the base grammar

= For each X:[i,j] calculate P(X]|i,j,s)
= This isn’t trivial, and there are clever speed ups

= Second, do the full O(n>) CKY
= Skip any X :[i,j] which had low (say, < 0.0001) posterior

= Avoids almost all work in the second phase!

= Charniak et al 06: can use more passes
= Petrov et al 07: can use many more passes
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Results

= Some results
= Collins 99 — 88.6 F1 (generative lexical)

= Charniak and Johnson 05 —-89.7 / 91.3 F1 (generative
lexical / reranked)

= Petrov et al 06 —90.7 F1 (generative unlexical)
= McClosky et al 06 —92.1 F1 (gen + rerank + self-train)

= However

= Bilexical counts rarely make a difference (why?)
= Gildea 01 — Removing bilexical counts costs < 0.5 F1



Latent Variable PCFGs



Ef; The Game of Designing a Grammar

S
B
NP-1 VP
| ——
PRP VBD NP-2
I I —

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins 99, Charniak "00]
= Automatic clustering?



E& Latent Variable Grammars

S-1
- \ T
NP-0 VP-1 -0
| — |
S PRP-1 VBD-0 ADJP-0
N I | —_—
NP VP . He was  right
I /\ | EER
PRP VBD ADJP . .o
| | — -\
He was right NP-1 VP-1 0
] — |
PRP-0 VBD-0 ADJP-1
| [ _

He was right

Parse Tree T

Sentence Derivations ¢ : T

Grammar G

SO — NPO VPO
S(] — NP1 VPO
SO — NPO VP1
So — NP; VP,
Sl — NPO VP()

Sl — NP1 VPl
NPO — PRPO
NPy — PRP,

Lexicon

NN N N N

-~ N

PRPO — She
PRPl — She

VBDy — was
VBD,; — was
VBD,; — was

Para méters ()



Eﬁ Learning Latent Annotations

Forward

—

EM algorithm:
» Brackets are known
= Base categories are known
* Only induce subcategories

S[X1]
-~
NP[X5] VP[X,] [X7]

I — | ‘
PRP[X35] VBD[X5] ADIP[ Xs] .
I I —

He was right

Just like Forward-Backward for HMMs.

Backward
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Refinement of the DT tag

DT

the (0.50)
a (0.24)
The (0.08)

a (0.61) the (0.80) this (0.39) some (0.20)
the (0.19) The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)

DT-1 DT-2 DT-3 DT-4
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Hierarchical refinement

s N
LRI LW GARS Y
w 5% AN
N w dwi XS

. e

LS Py g NN
SN NN

The (0.08)

Y

The (0.09)

the (0.54)

this (0.

~some (0.11)

a (061)
the (0.19)
an (0.11)

the (0.80)
The (0.15)
a (0.01)

this (0.39)
that (0.28)
That (0.11)

some (0.20)
all (0.19)

those (0.12)




W€ Hierarchical Estimation Results

©
o

|

©®
A O

x© o
o DN

Parsing accuracy (F1)

~ ~ ~
N ()] oo
-\

' ' ' ' Model F1
100 300 500 700 900 11 —
Total Number of gramma] Flat Training 87.3

Hierarchical Training | 88.4
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Refinement of the , tag

= Splitting all categories equally is wasteful:

, (1.00)
-
, (1.00) , (1.00)
«— T «— T

, (1.00) , (1.00) , (1.00) , (1.00)
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Adaptive Splitting

= \Want to split complex categories more

» |dea: split everything, roll back splits which
were least useful

o&‘.....4,..<,,«.».;.‘.,..A.......M-u..,,“..w RSN

- the (U.D4)
Q PN

! Vi s &Y 300
L LULUY )
NEEhe AN S

.‘m‘.w.mmmt;%(.

oﬁ,,.‘w,m ——

a (0.01) the (0.80)

the (0.19) The (0.15)
an (0.11) a(0.01)

the (0.96) | [ The (0.93)
2 (0.01) A (0.02)
The (0.01) | | No (0.01)




Adaptive Splitting Results

@
2 84
]

80

——50% Merging «wHierarchical Training wmwe Flat Trainin

Model F1

100 300 500 700 900

Previous 88.4

With 50% Merging | 89.5




Eﬁ Number of Phrasal Subcategories

1S71
100d
X
dravHM
odd
odvds
FLNI
dAQVHM
don
OVN
ovdd
dNOD
0S
ddHM
1dd
ANIS
XN
Ndd
dNHM
dO
dveas
drav

dAav
dd
dA

dN

40




S
dd
NAS

HN

[ ol
say
M4

-gyy-
1am
$dM
X3

g T
UM
1ad
SOd
[ dM
Hgy
an

[ $did
ddd
srr
ure
[ 20
SdNN
[ 1a

[ dan
_ | zan

:‘7 HII_III_III_IJ_' HIDID N NN W N B B B e B e B s B s B s

- [ @
j KER
_ [ an

[ 98

[ a9y
_ _ [ NEA
_ | NN
_ I I I I - SNN

_ [ rr
. : : dNN

70

Efi Number of Lexical Subcategories
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Learned Splits

= Proper Nouns (NNP):

NNP-14 Oct. Nov. Sept.

NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco  Street

»= Personal pronouns (PRP):

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him




Learned Splits
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= Relative adverbs (RBR):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

= Cardinal Numbers (CD):

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 /8 58 34
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Final Results (Accuracy)

< 40 words all
F1 F1
m | Charniak&Johnson ‘05 (generative) 90.1 89.6
Z
@ Split / Merge 90.6 90.1
Gn% Dubey ‘05 76.3 -
A Split / Merge 80.8 80.1
o Chiang et al. ‘02 80.0 76.6
T
< Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods



Efficient Parsing for
Hierarchical Grammars
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Coarse-to-Fine Inference

= Example: PP attachment

S
/\
NP VP
PRP
2??°7??°7°7?°7?7?
They
\Y% NP PP
RN RN
raised DT NN IN NP
I VAN

a  point of order
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Hierarchical Pruning

coarse: MNP wP | ..

splitineight: ... | ... [... | ... .. ||| [ || | o | |
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Bracket Posteriors
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1621 min
111 min
35 min

15 min

(no search error)



Unsupervised Tagging
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Unsupervised Tagging?

= AKA part-of-speech induction
= Task:

= Raw sentences in
" Tagged sentences out

= Obvious thing to do:
= Start with a (mostly) uniform HMM
= Run EM
" |[nspect results
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EM for HMMs: Process

= Alternate between recomputing distributions over hidden variables (the
tags) and reestimating parameters

Crucial step: we want to tally up how many (fractional) counts of each
kind of transition and emission we have under current params:

count(w,s) = Y  P(t; = s|lw)

W =W

count(s — §') = ZP(tz’—l = s,t; = s'|w)
)

=  Same quantities we needed to train a CRF!



Merialdo: Setup
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= Some (discouraging) experiments [Merialdo 94]

= Setup:
= You know the set of allowable tags for each word

= Fix k training examples to their true labels
= Learn P(w|t) on these examples
= Learn P(t|t,,t,) on these examples

= On n examples, re-estimate with EM

= Note: we know allowed tags but not frequencies
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Merialdo: Results

Number of tagged sentences used for the initial model

0 100 2000 5000 10000 20000 all

Iter Correct tags (% words) after ML on 1M words
0 770 900 954 962 96.6 96.9 97.0
1 805 926 958 963  96.6 96.7 96.8
2 818 930 957 961 96.3 96.4 96.4
3 830 931 954 958 96.1 96.2 96.2
4 840 930 952 955 958 96.0 9.0
5 848 929 951 954 956 95.8 95.8
6 853 928 949 952 955 95.6 95.7
7 858 928 947 951 95.3 95.5 95.5
8 861 927 946 950  95.2 95.4 95.4
9 863 926 945 949 951 953 95.3
10 B866 926 944 948 950 95.2 95.2




