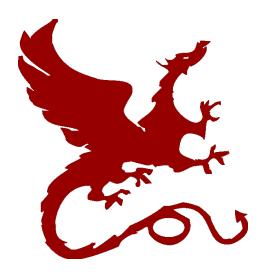
Algorithms for NLP



Classification I

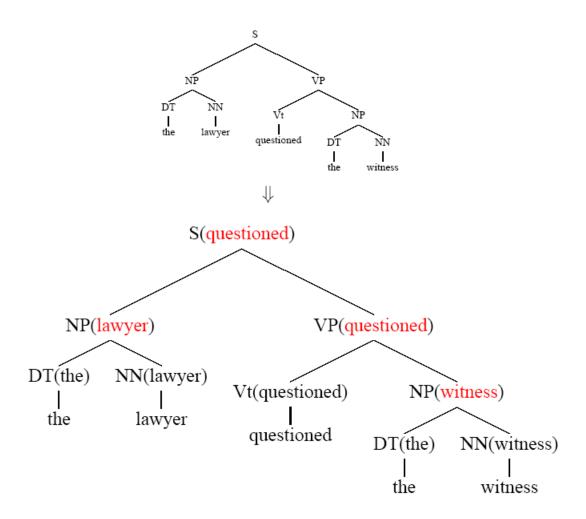
Taylor Berg-Kirkpatrick – CMU

Slides: Dan Klein – UC Berkeley

Efficient Parsing for Lexical Grammars

Lexicalized Trees

- Add "head words" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child



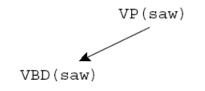
Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

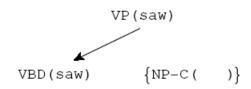
- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

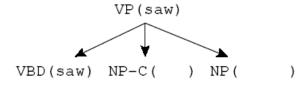
A derivation of a local tree [Collins 99]



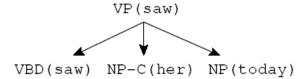
Choose a head tag and word



Choose a complement bag



Generate children (incl. adjuncts)



Recursively derive children

Lexicalized CKY

```
(VP->VBD...NP •) [saw]
                    (VP->VBD •) [saw]
                                            NP[her]
bestScore(X,i,j,h)
   if (j = i+1)
      return tagScore(X,s[i])
   else
      return
         \max_{\mathbf{x}, \mathbf{h}', \mathbf{x} \to \mathbf{y}\mathbf{z}} \mathbf{score} (\mathbf{X}[\mathbf{h}] \to \mathbf{Y}[\mathbf{h}] \ \mathbf{Z}[\mathbf{h}'])
                       bestScore(Y,i,k,h) *
                       bestScore(Z,k,j,h')
                max score (X[h] \rightarrow Y[h'] Z[h])
             k,h',X->YZ
                       bestScore(Y,i,k,h') *
                       bestScore(Z,k,j,h)
```


Quartic Parsing

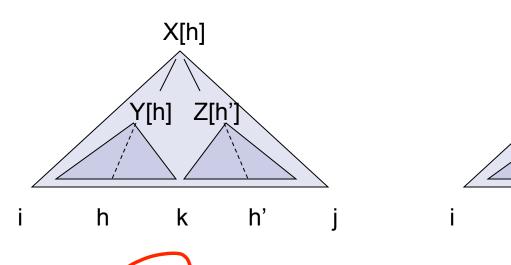
X[h]

k

Y[h]

h

Turns out, you can do (a little) better [Eisner 99]

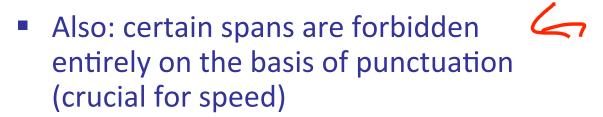


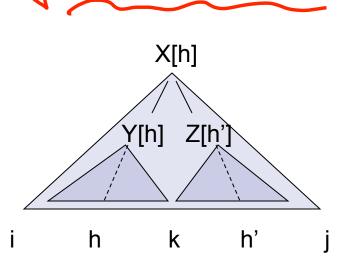
Still prohibitive in practice if not pruned

Pruning with Beams (X:5,57:5)

 The Collins parser prunes with percell beams [Collins 99]

- Essentially, run the O(n⁵) CKY
- Remember only a few hypotheses for each span <i,j>.
- If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
- Keeps things more or less cubic (and in practice is more like linear!)





Pruning with a PCFG

- The Charniak parser prunes using a two-pass, coarseto-fine approach [Charniak 97+]
 - First, parse with the base grammar
 - For each X:[i,j] calculate P(X|i,j,s)
 - This isn't trivial, and there are clever speed ups
 - Second, do the full O(n⁵) CKY
 - Skip any X :[i,j] which had low (say, < 0.0001) posterior</p>
 - Avoids almost all work in the second phase!
- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes

Cov

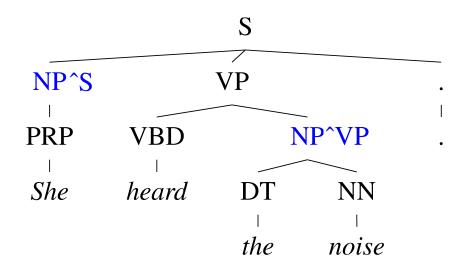
Results

- Stanford Parser 86.3 (unlex / struct annotation)
- Collins 99 88.6 F1 (lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (lexical + rerank)
- McClosky et al 06 92.1 F1 (lexical + rerank + self-train)
- Petrov et al 06 90.7 F1 (unlex / latent vars)
- Petrov et al 10 91.8 (unlex / latent vars + ensemble)
- Socher et al 13 90.4 (unlex + neural rerank)
- Vinyals et al 15 90.5 / 92.1 (neural sequence + self-train)
- Dyer et al 16 92.4 (neural shift-reduce)

...many more that are really cool (e.g. Hall and Klein 12,14)

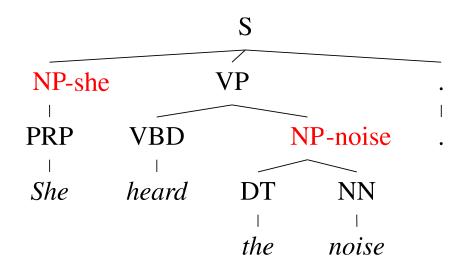
Latent Variable PCFGs

The Game of Designing a Grammar



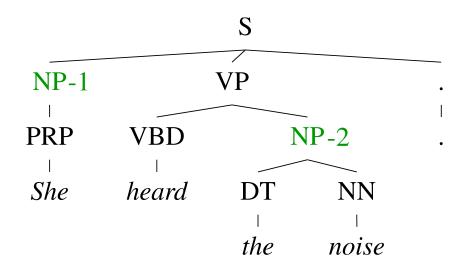
- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]

The Game of Designing a Grammar



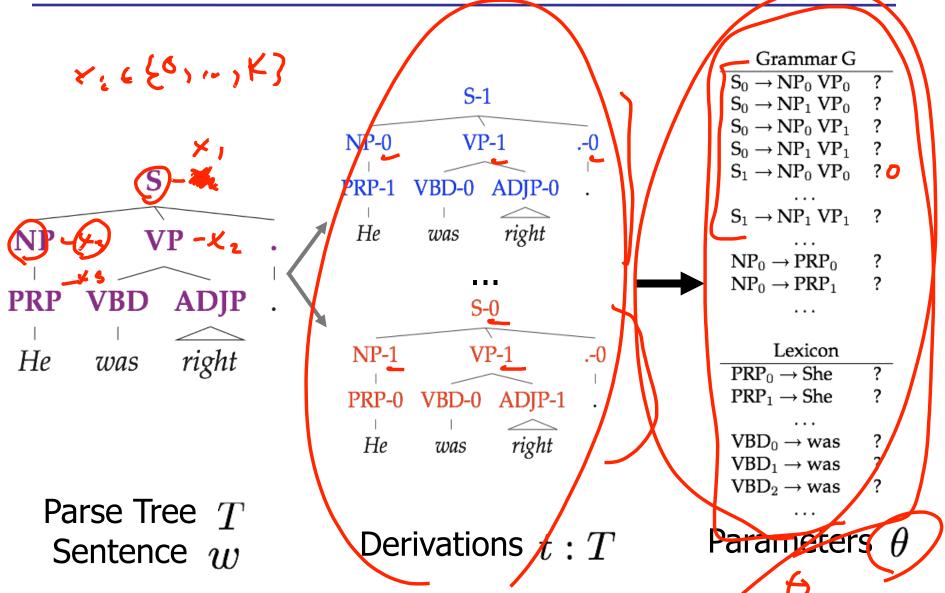
- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]

The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]
 - Automatic clustering?

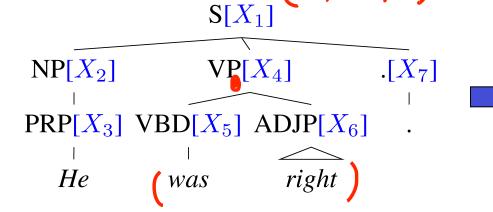
Latent Variable Grammars



Learning Latent Annotaations

EM algorithm:

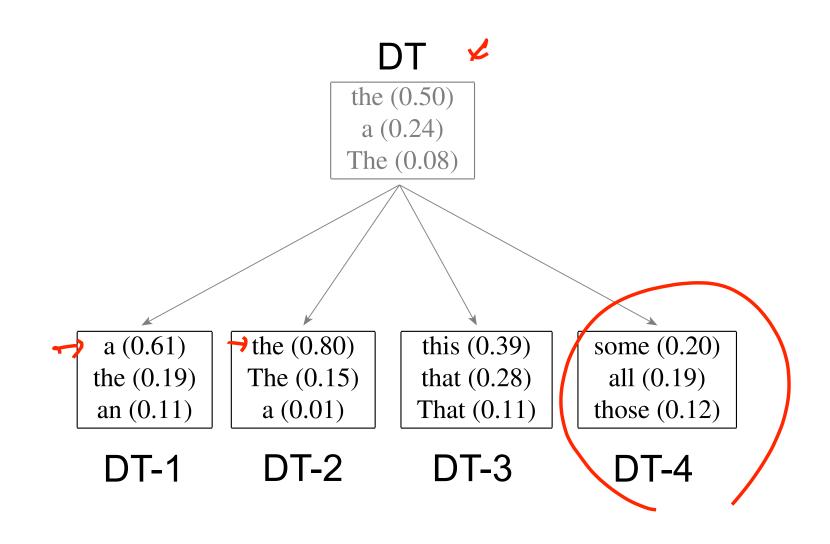
- Brackets are known
- Base categories are known
- Only induce subcategories



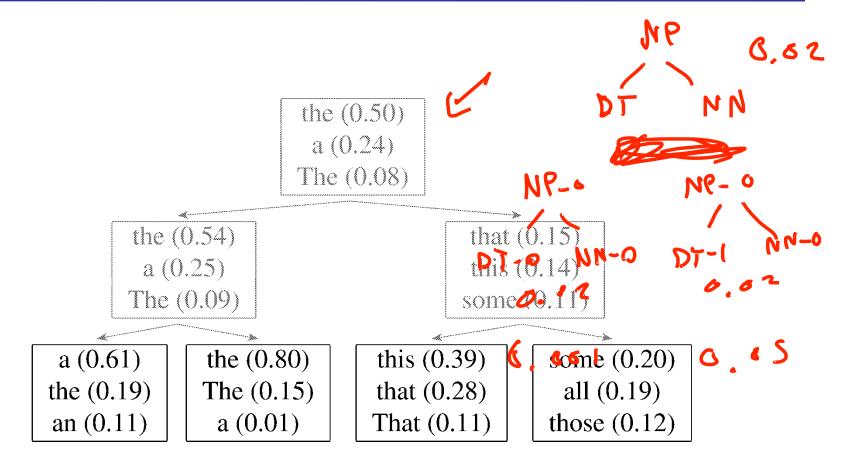
Backward He right was

Just like Forward-Backward for HMMs.

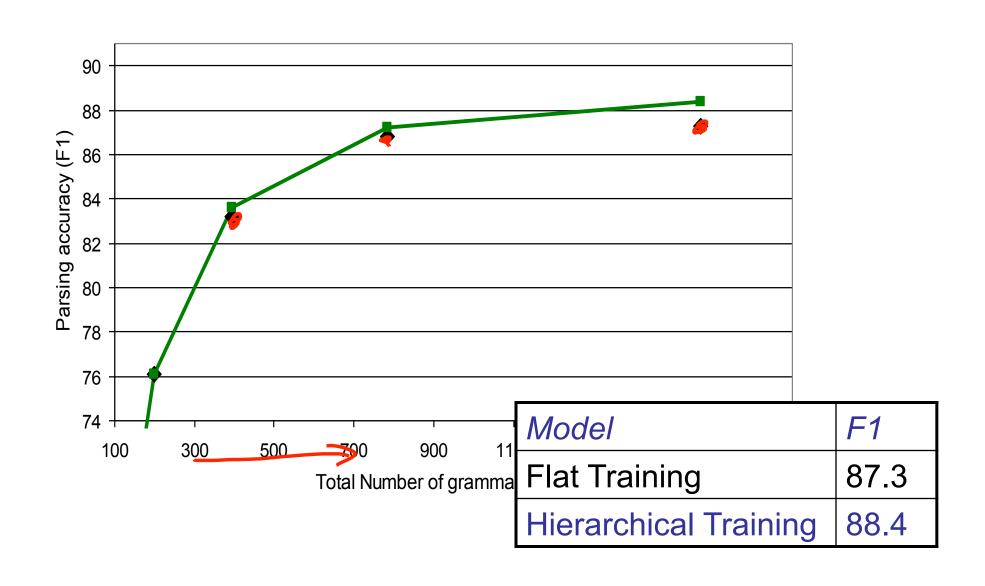
Refinement of the DT tag



Hierarchical refinement

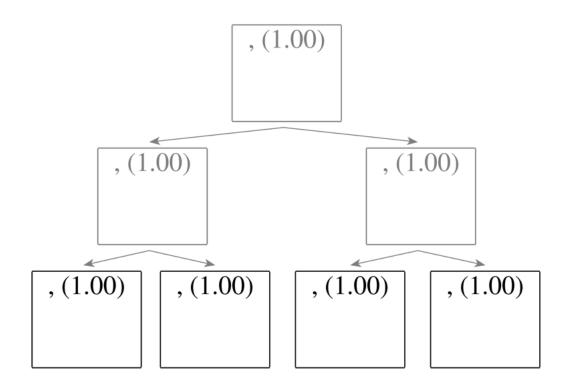


Hierarchical Estimation Results



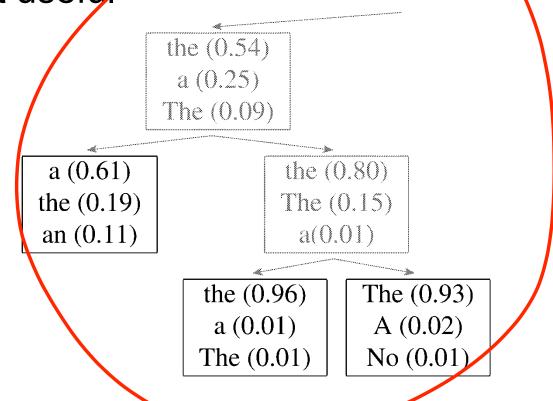
Refinement of the , tag

Splitting all categories equally is wasteful:

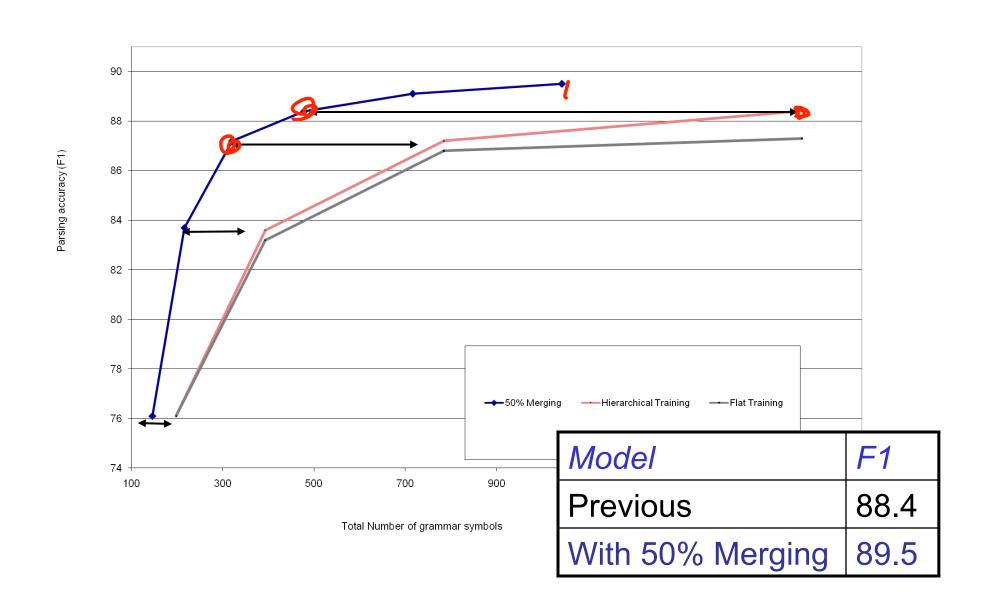


Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful



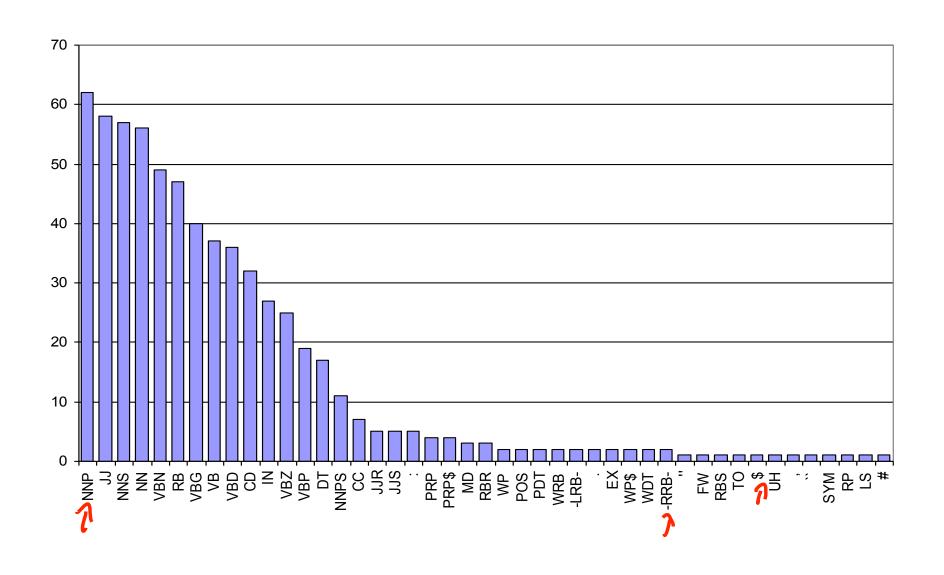
Adaptive Splitting Results



Number of Phrasal Subcategories



Number of Lexical Subcategories



Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	It	He	1
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Relative adverbs (RBR):

RBR-0	further	lower	higher	~
RBR-1	more	less	More	5
RBR-2	earlier	Earlier	later	4

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

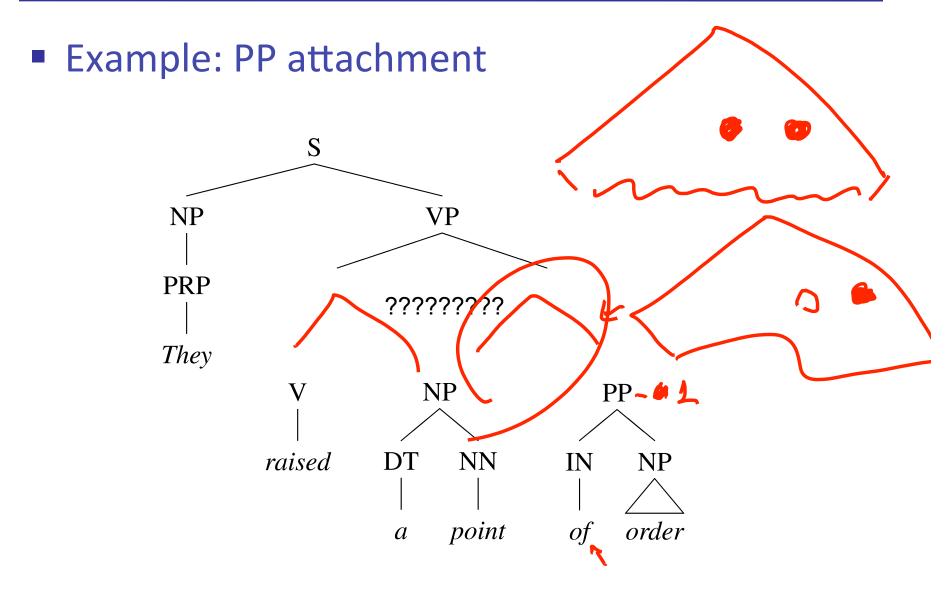
Final Results (Accuracy)

		≤ 40 words F1	all F1
<u> </u>	Charniak&Johnson '05 (generative)	90.1	89.6
ENG	Split / Merge	90.6	90.1
G	Dubey '05	76.3	-
ER	Split / Merge	80.8	80.1
<u>C</u>	Chiang et al. '02	80.0	76.6
CHN	Split / Merge	86.3	83.4

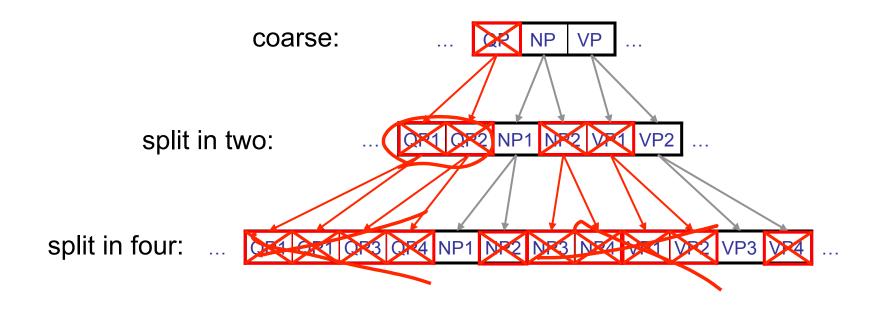
Still higher numbers from reranking / self-training methods

Efficient Parsing for Hierarchical Grammars

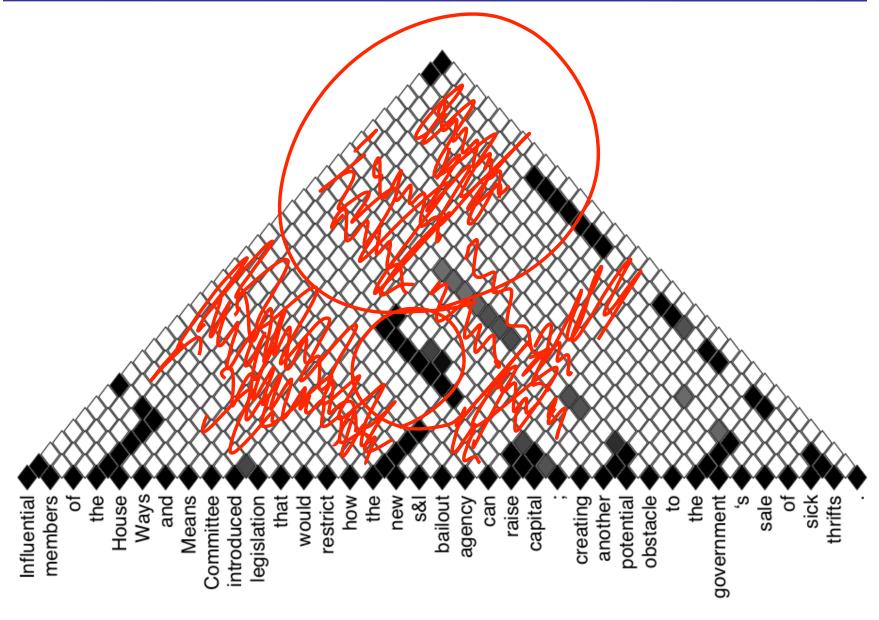
Coarse-to-Fine Inference



Hierarchical Pruning



Bracket Posteriors



1621 min ← 111 min ← 35 min ← 15 min < (no search error)←

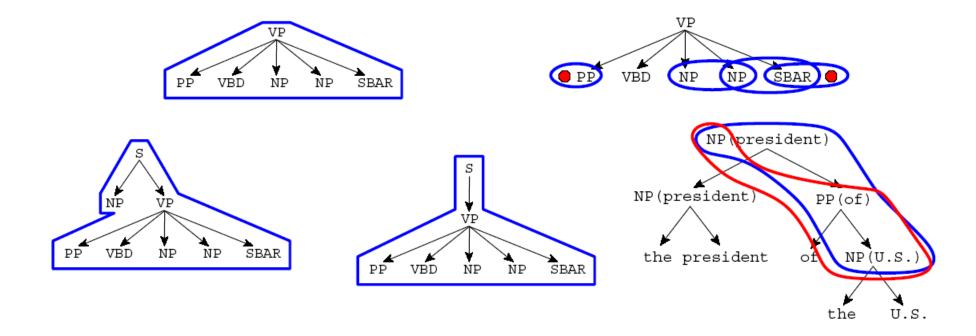
Results

- Stanford Parser 86.3 (unlex / struct annotation)
- Collins 99 88.6 F1 (lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (lexical + rerank)
- McClosky et al 06 92.1 F1 (lexical + rerank + self-train)
- Petrov et al 06 90.7 F1 (unlex / latent vars) <</p>
- Petrov et al 10 91.8 (unlex / latent vars + ensemble)
- Socher et al 13 90.4 (unlex + neural rerank)
- Vinyals et al 15 90.5 / 92.1 (neural sequence + self-train)
- Dyer et al 16 92.4 (neural shift-reduce)

...many more that are really cool (e.g. Hall and Klein 12,14)

Parse Reranking

- Assume the number of parses is very small
- We can represent each parse T as a feature vector $\varphi(T)$
 - Typically, all local rules are features
 - Also non-local features, like how right-branching the overall tree is
 - [Charniak and Johnson 05] gives a rich set of features

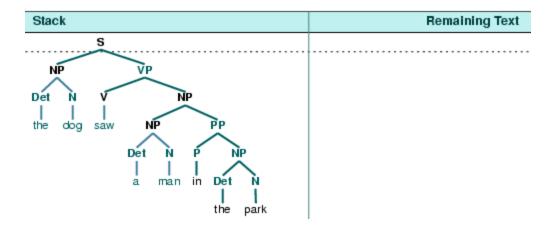


- Stanford Parser 86.3 (unlex / struct annotation)
- Collins 99 88.6 F1 (lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (lexical + rerank)
- McClosky et al 06 92.1 F1 (lexical + rerank + self-train)
- Petrov et al 06 90.7 F1 (unlex / latent vars)
- Petrov et al 10 91.8 (unlex / latent vars + ensemble)
- Socher et al 13 90.4 (unlex + neural rerank)
- Vinyals et al 15 − 90.5 / 92.1 (neural sequence + self-train)
 - Dyer et al 16 92.4 (neural shift-reduce)

...many more that are really cool (e.g. Hall and Klein 12,14)

Shift-Reduce Parsers

Another way to derive a tree:



- Parsing
 - No useful dynamic programming search
 - Can still use beam search [Ratnaparkhi 97]

Cov

Results

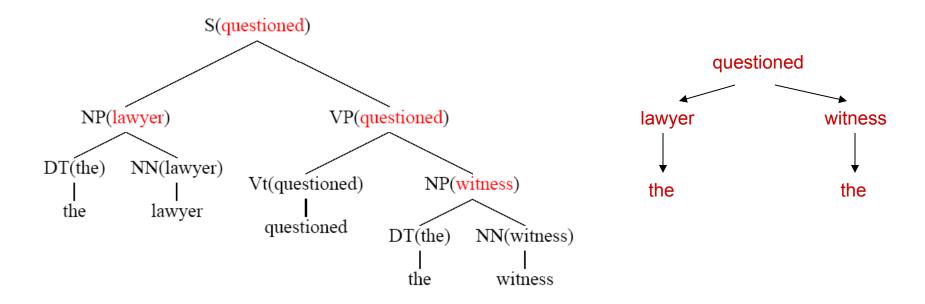
- Stanford Parser 86.3 (unlex / struct annotation)
- Collins 99 88.6 F1 (lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (lexical + rerank)
- McClosky et al 06 92.1 F1 (lexical + rerank + self-train)
- Petrov et al 06 90.7 F1 (unlex / latent vars)
- Petrov et al 10 91.8 (unlex / latent vars + ensemble)
- Socher et al 13 90.4 (unlex + neural rerank)
- Vinyals et al 15 90.5 / 92.1 (neural sequence + self-train)
- Dyer et al 16 92.4 (neural shift-reduce)

...many more that are really cool (e.g. Hall and Klein 12,14)

Other Syntactic Models

Dependency Parsing

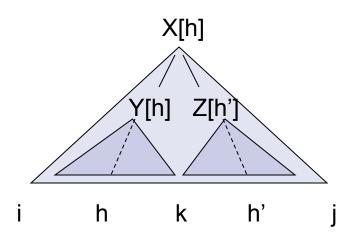
Lexicalized parsers can be seen as producing dependency trees

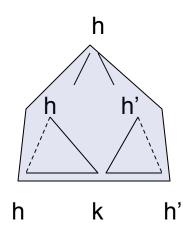


 Each local binary tree corresponds to an attachment in the dependency graph

Dependency Parsing

Pure dependency parsing is only cubic [Eisner 99]

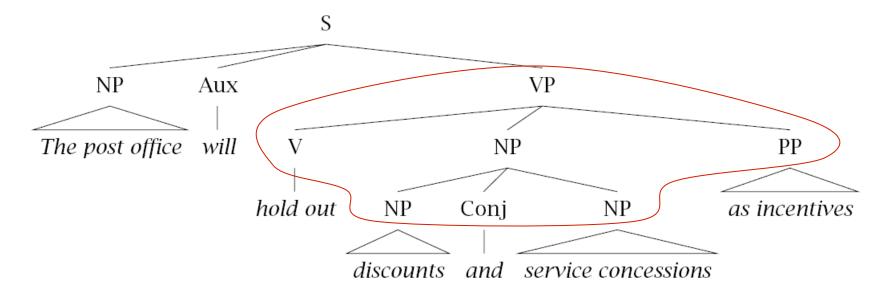




- Some work on non-projective dependencies
 - Common in, e.g. Czech parsing
 - Can do with MST algorithms [McDonald and Pereira 05]

Tree Insertion Grammars

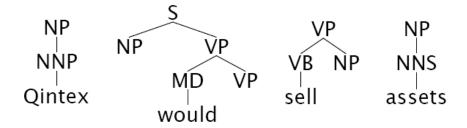
Rewrite large (possibly lexicalized) subtrees in a single step

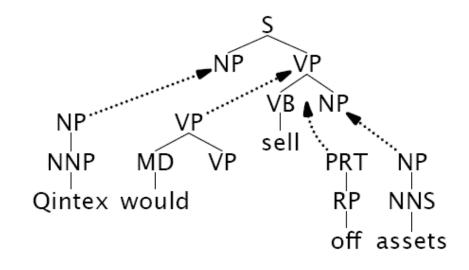


- Formally, a tree-insertion grammar
- Derivational ambiguity whether subtrees were generated atomically or compositionally
- Most probable parse is NP-complete

Tree-adjoining grammars

- Start with local trees
- Can insert structure with adjunction operators
- Mildly contextsensitive
- Models long-distance dependencies naturally
- ... as well as other weird stuff that CFGs don't capture well (e.g. cross-serial dependencies)





CCG Parsing

- CombinatoryCategorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus (more later)
 - Can have spurious ambiguities (why?)

 $John \vdash NP$ $shares \vdash NP$ $buys \vdash (S \setminus NP) / NP$ $sleeps \vdash S \setminus NP$ $well \vdash (S \setminus NP) \setminus (S \setminus NP)$

Classification

Classification

Automatically make a decision about inputs

- Example: document → category
- Example: image of digit → digit
- Example: image of object → object type
- Example: query + webpages → best match
- Example: symptoms → diagnosis
- **-** ...

Three main ideas

- Representation as feature vectors / kernel functions
- Scoring by linear functions
- Learning by optimization

Some Definitions

INPUTS

$$\mathbf{x}_i$$

close the

CANDIDATE

SET

$$\mathcal{Y}(\mathbf{x})$$

{door, table, ...}

CANDIDATES

table

TRUE OUTPUTS

$$\mathbf{y}_i^*$$

door

FEATURE VECTORS

$$f(x, y)$$
 [0 0 1 0 0 0 1 0 0 0 0 0]

**Close" in x \(x \) y="door"

**Close" in x \(x \) y="door"

"close" in $x \land y$ ="door"

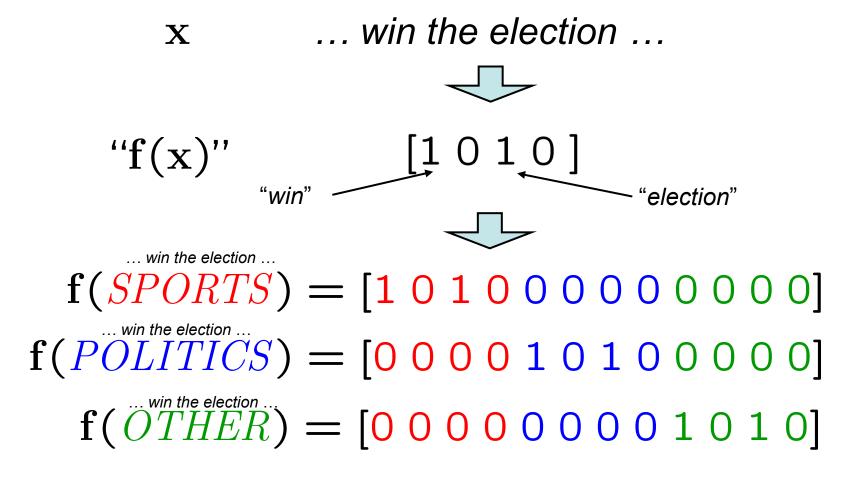
y occurs in x

 x_{-1} ="the" \land y="table"

Features

Block Feature Vectors

 Sometimes, we think of the input as having features, which are multiplied by outputs to form the candidates



Non-Block Feature Vectors

- Sometimes the features of candidates cannot be decomposed in this regular way
- Example: a parse tree's features may be the production vp
 present in the tree

$$f(\begin{array}{c} \stackrel{S}{\underset{N \ N}{\text{P}}} \stackrel{VP}{\underset{V}{\text{VP}}}) = [10101] \\ f(\begin{array}{c} \stackrel{NP}{\underset{N \ N}{\text{VP}}} \stackrel{VP}{\underset{N}{\text{VP}}} \\ \stackrel{NP}{\underset{N \ N}{\text{VP}}} \end{array}) = [11010] \\ \stackrel{NP}{\underset{N \ N}{\text{VP}}} \stackrel{NP}{\underset{N}{\text{VP}}} \\ \stackrel{NP}{\underset{N \ N}{\text{VP}}} \\ \stackrel{VP}{\underset{N \ N}} \\ \stackrel{VP}{\underset{N \ N}{\text{VP}}} \\ \stackrel{VP}{\underset{N \ N}{\text{N}}} \\ \stackrel{VP}{\underset{N \ N}{\text{N}}} \\ \stackrel{VP}{\underset{N \ N}} \\ \stackrel{VP}{\underset{N \ N}{\text{N}}} \\ \stackrel{VP}{\underset{N \ N}} \\ \stackrel{VP}{\underset{N \ N}} \\ \stackrel{VP}{\underset{N \ N}} \\ \stackrel{VP}{\underset{N \ N}} \\ \stackrel{VP}{\underset{N \ N}}} \\ \stackrel{VP}{\underset{N \ N}} \\ \stackrel{VP}{\underset{N}} \\ \stackrel{VP}{\underset{N \ N}} \\ \stackrel{VP}{\underset{N \ N}} \\ \stackrel{VP}{\underset$$

- Different candidates will thus often share features
- We'll return to the non-block case later

Linear Models

Linear Models: Scoring

In a linear model, each feature gets a weight w

We score hypotheses by multiplying features and weights:

$$score(\mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})$$

$$score(POLITICS, \mathbf{w}) = 1 \times 1 + 1 \times 1 = 2$$

Linear Models: Decision Rule

The linear decision rule:

$$\begin{aligned} \textit{prediction}(\text{... win the election ..., } \mathbf{w}) &= \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\text{arg max } \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})} \\ \textit{score}(\overset{\text{win the election ...}}{\textit{SPORTS}}, \mathbf{w}) &= 1 \times 1 + (-1) \times 1 = 0 \\ \textit{score}(\overset{\text{win the election ...}}{\textit{POLITICS}}, \mathbf{w}) &= 1 \times 1 + 1 \times 1 = 2 \\ \textit{score}(\overset{\text{win the election ...}}{\textit{OTHER}}, \mathbf{w}) &= (-2) \times 1 + (-1) \times 1 = -3 \\ & & & & & & & & & & & & & \\ \textit{prediction}(\text{... win the election ..., } \mathbf{w}) &= \overset{\text{... win the election ...}}{\textit{POLITICS}} \end{aligned}$$

We've said nothing about where weights come from

Binary Classification

-1 = HAM

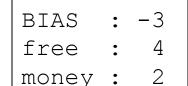
- Important special case: binary classification
 - Classes are y=+1/-1

$$f(x,-1) = -f(x,+1)$$

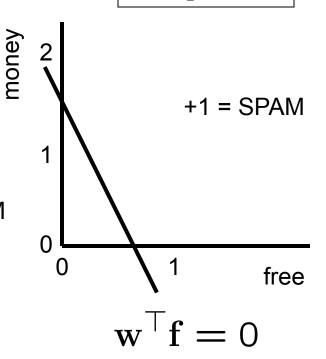
 $f(x) = 2f(x,+1)$

Decision boundary is a hyperplane

$$\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}) = 0$$

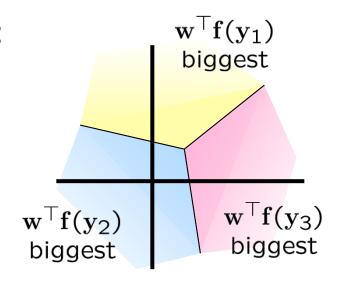


 \mathbf{W}



Multiclass Decision Rule

- If more than two classes:
 - Highest score wins
 - Boundaries are more complex
 - Harder to visualize



$$prediction(\mathbf{x}_i, \mathbf{w}) = \underset{\mathbf{y} \in \mathcal{Y}}{arg \max} \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$

■ There are other ways: e.g. reconcile pairwise decisions

Learning

Learning Classifier Weights

- Two broad approaches to learning weights
- Generative: work with a probabilistic model of the data, weights are (log) local conditional probabilities
 - Advantages: learning weights is easy, smoothing is well-understood, backed by understanding of modeling
- Discriminative: set weights based on some error-related criterion
 - Advantages: error-driven, often weights which are good for classification aren't the ones which best describe the data
- We'll mainly talk about the latter for now

How to pick weights?

- Goal: choose "best" vector w given training data
 - For now, we mean "best for classification"
- The ideal: the weights which have greatest test set accuracy / F1 / whatever
 - But, don't have the test set
 - Must compute weights from training set
- Maybe we want weights which give best training set accuracy?
 - Hard discontinuous optimization problem
 - May not (does not) generalize to test set
 - Easy to overfit

Though, min-error training for MT does exactly this.

Minimize Training Error?

A loss function declares how costly each mistake is

$$\ell_i(\mathbf{y}) = \ell(\mathbf{y}, \mathbf{y}_i^*)$$

- E.g. 0 loss for correct label, 1 loss for wrong label
- Can weight mistakes differently (e.g. false positives worse than false negatives or Hamming distance over structured labels)
- We could, in principle, minimize training loss:

$$\min_{\mathbf{w}} \sum_{i} \ell_{i} \left(\arg\max_{\mathbf{y}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

This is a hard, discontinuous optimization problem

Linear Models: Perceptron

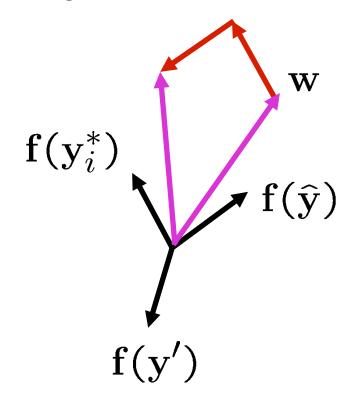
- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error
- The (online) perceptron algorithm:
 - Start with zero weights w
 - Visit training instances one by one
 - Try to classify

$$\hat{\mathbf{y}} = \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\text{arg max }} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})$$

- If correct, no change!
- If wrong: adjust weights

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{y}_i^*)$$

 $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{f}(\widehat{\mathbf{y}})$



Example: "Best" Web Page

$$w = [1 \ 2 \ 0 \ 0 \ ...]$$

 x_i = "Apple Computers"

$$) = [0.3500...]$$

$$) = [0.3500...]$$
 $\mathbf{w}^{\top} \mathbf{f} = 10.3$ $\hat{\mathbf{y}}$

$$) = [0.8421...]$$

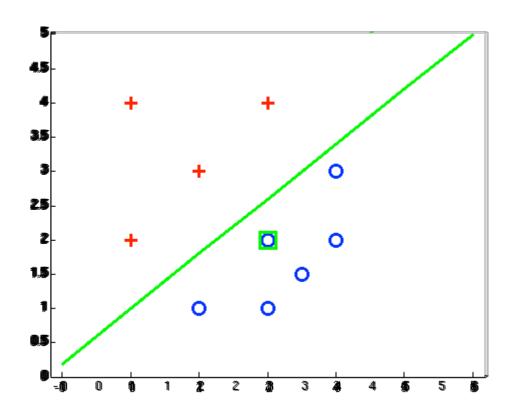
$$\mathbf{w}^{\top}\mathbf{f} = 8.8 \quad \mathbf{y}_i^*$$

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{y}_i^*) - \mathbf{f}(\widehat{\mathbf{y}})$$

$$w = [1.5 \ 1 \ 2 \ 1 \ ...]$$

Examples: Perceptron

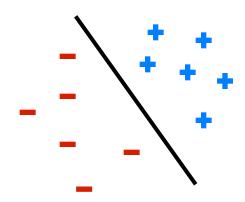
Separable Case



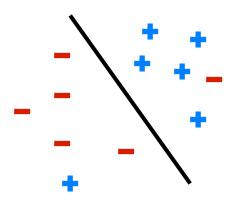
Perceptrons and Separability

- A data set is separable if some parameters classify it perfectly
- Convergence: if training data separable, perceptron will separate (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the *margin* or degree of separability

Separable

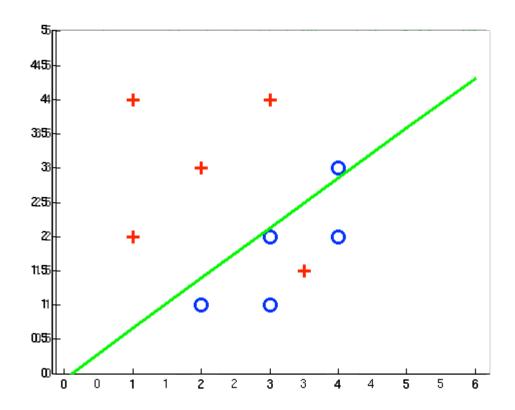


Non-Separable



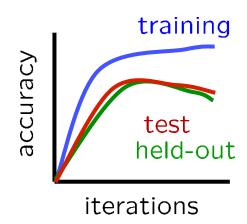
Examples: Perceptron

Non-Separable Case

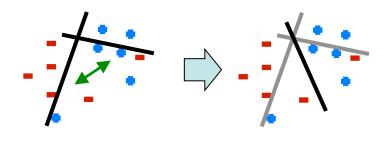


Issues with Perceptrons

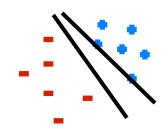
- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining isn't the typically discussed source of overfitting, but it can be important



- Regularization: if the data isn't separable, weights often thrash around
 - Averaging weight vectors over time can help (averaged perceptron)
 - [Freund & Schapire 99, Collins 02]



 Mediocre generalization: finds a "barely" separating solution



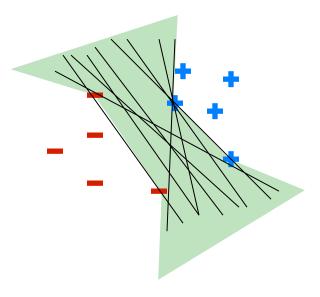
Problems with Perceptrons

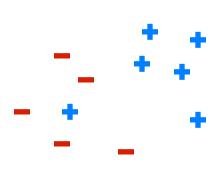
Perceptron "goal": separate the training data

$$\forall i, \forall \mathbf{y} \neq \mathbf{y}^i \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$

1. This may be an entire feasible space

2. Or it may be impossible



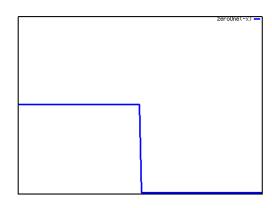


Margin

Objective Functions

- What do we want from our weights?
 - Depends!
 - So far: minimize (training) errors:

$$\sum_{i} step\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})\right)$$

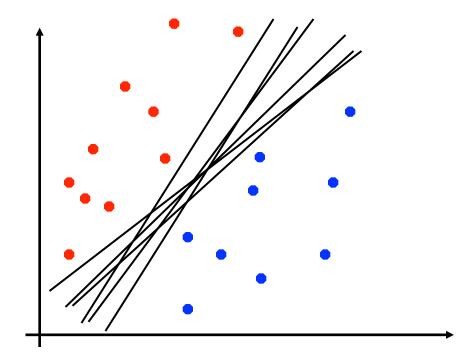


$$\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}^{i}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})$$

- This is the "zero-one loss"
 - Discontinuous, minimizing is NP-complete
 - Not really what we want anyway
- Maximum entropy and SVMs have other objectives related to zero-one loss

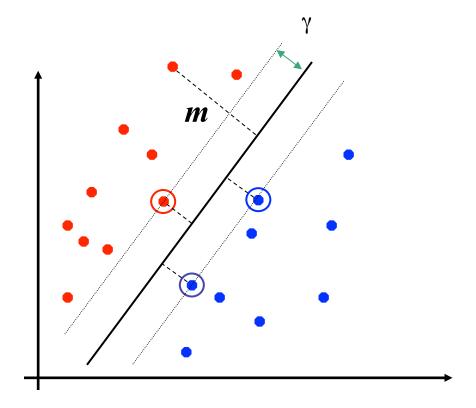
Linear Separators

Which of these linear separators is optimal?



Classification Margin (Binary)

- Distance of \mathbf{x}_i to separator is its margin, \mathbf{m}_i
- Examples closest to the hyperplane are support vectors
- Margin γ of the separator is the minimum m



Classification Margin

• For each example x_i and possible mistaken candidate y, we avoid that mistake by a margin $m_i(y)$ (with zero-one loss)

$$m_i(\mathbf{y}) = \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$

• Margin γ of the entire separator is the minimum m

$$\gamma = \min_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

• It is also the largest γ for which the following constraints hold

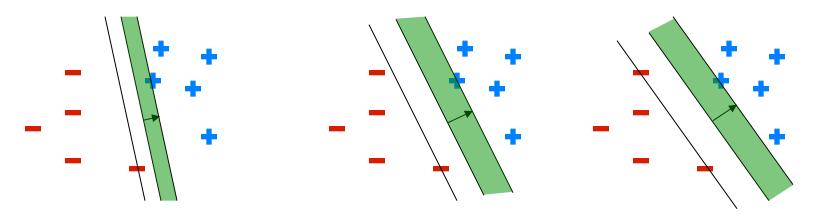
$$\forall i, \forall \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y})$$

Maximum Margin

Separable SVMs: find the max-margin w

$$\max_{\substack{||\mathbf{w}||=1}} \gamma \qquad \qquad \ell_i(\mathbf{y}) = \begin{cases} 0 & \text{if } \mathbf{y} = \mathbf{y}_i^* \\ 1 & \text{if } \mathbf{y} \neq \mathbf{y}_i^* \end{cases}$$

$$\forall i, \forall \mathbf{y} \quad \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y})$$

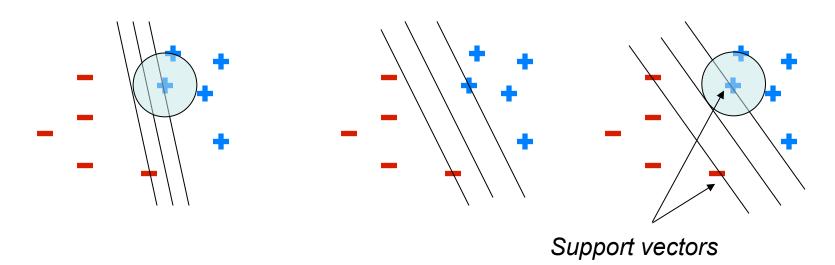


- Can stick this into Matlab and (slowly) get an SVM
- Won't work (well) if non-separable

Why Max Margin?

Why do this? Various arguments:

- Solution depends only on the boundary cases, or support vectors (but remember how this diagram is broken!)
- Solution robust to movement of support vectors
- Sparse solutions (features not in support vectors get zero weight)
- Generalization bound arguments
- Works well in practice for many problems



Max Margin / Small Norm

Reformulation: find the smallest w which separates data

 γ scales linearly in w, so if ||w|| isn't constrained, we can take any separating w and scale up our margin

$$\gamma = \min_{i, \mathbf{y} \neq \mathbf{y}_i^*} [\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y})] / \ell_i(\mathbf{y})$$

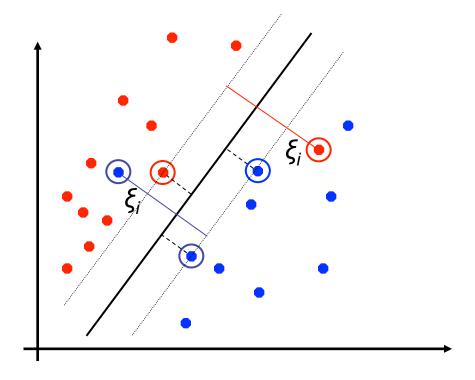
• Instead of fixing the scale of w, we can fix $\gamma = 1$

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$

$$\forall i, \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + 1\ell_i(\mathbf{y})$$

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting in a soft margin classifier



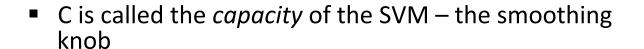
Maximum Margin

Note: exist other choices of how to penalize slacks!

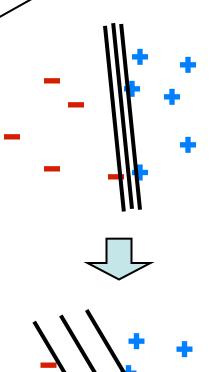
- Non-separable SVMs
 - Add slack to the constraints
 - Make objective pay (linearly) for slack:

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$

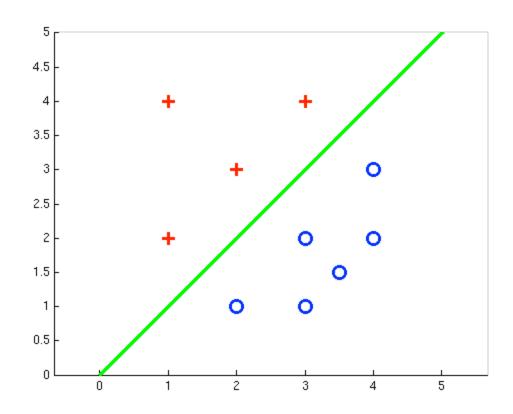
$$\forall i, \mathbf{y}, \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) + \xi_i \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$



- Can still stick this into Matlab if you want
- Constrained optimization is hard; better methods!
- We'll come back to this later



Maximum Margin



Likelihood

Linear Models: Maximum Entropy

- Maximum entropy (logistic regression)
 - Use the scores as probabilities:

$$\mathsf{P}(y|x,w) = \frac{\exp(w^\top f(y))}{\sum_{y'} \exp(w^\top f(y'))} \quad \longleftarrow \quad \text{Make} \quad \text{Mositival}$$

Maximize the (log) conditional likelihood of training data

$$L(\mathbf{w}) = \log \prod_{i} P(\mathbf{y}_{i}^{*} | \mathbf{x}_{i}, \mathbf{w}) = \sum_{i} \log \left(\frac{\exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}))}{\sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))} \right)$$

$$= \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

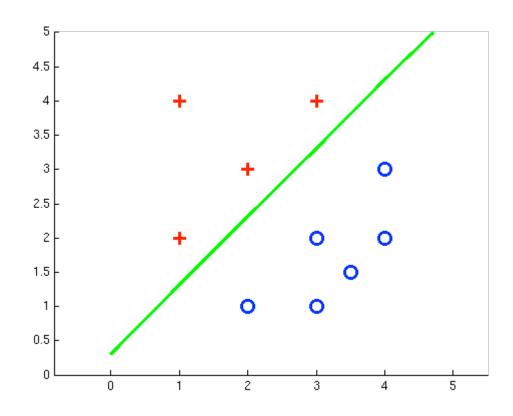
Maximum Entropy II

- Motivation for maximum entropy:
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases...
 - ... in practice, though, posteriors are pretty peaked
- Regularization (smoothing)

$$\max_{\mathbf{w}} \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) - k ||\mathbf{w}||^{2}$$

$$\min_{\mathbf{w}} k ||\mathbf{w}||^{2} - \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

Maximum Entropy



Loss Comparison

Log-Loss

• If we view maxent as a minimization problem:

$$\min_{\mathbf{w}} \ k||\mathbf{w}||^2 + \sum_i - \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}))\right)$$

This minimizes the "log loss" on each example

$$-\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}))\right) = -\log \mathsf{P}(\mathbf{y}_{i}^{*}|\mathbf{x}_{i},\mathbf{w})$$

$$step\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})\right)$$

One view: log loss is an upper bound on zero-one loss

Remember SVMs...

We had a constrained minimization

$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i
\forall i, \mathbf{y}, \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) + \xi_i \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$

• ...but we can solve for ξ_i

$$\forall i, \mathbf{y}, \quad \xi_i \ge \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*)$$
$$\forall i, \quad \xi_i = \max_{\mathbf{y}} \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*)$$

Giving

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \left(\max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \right)$$

Hinge Loss

Plot really only right in binary case

Consider the per-instance objective:

$$\min_{\mathbf{w}} \ k||\mathbf{w}||^2 + \sum_i \left(\max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(y) \right) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \right)$$

- This is called the "hinge loss"
 - Unlike maxent / log loss, you stop gaining objective once the true label wins by enough
 - You can start from here and derive the SVM objective
 - Can solve directly with sub-gradient decent (e.g. Pegasos: Shalev-Shwartz et al 07)



$$\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}
eq \mathbf{y}_i^*} \left(\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y})\right)$$

Max vs "Soft-Max" Margin

SVMs:

$$\min_{\mathbf{w}} k||\mathbf{w}||^2 - \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) \right)$$

You can make this zero

Maxent:

$$\min_{\mathbf{w}} |k||\mathbf{w}||^2 - \sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) \right) \right)$$

... but not this one

- Very similar! Both try to make the true score better than a function of the other scores
 - The SVM tries to beat the augmented runner-up
 - The Maxent classifier tries to beat the "soft-max"

Loss Functions: Comparison

Zero-One Loss

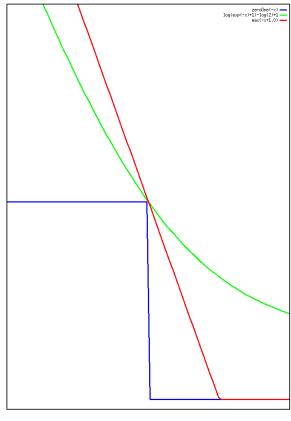
$$\sum_{i} step \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

Hinge

$$\sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) + \ell_{i}(\mathbf{y}) \right) \right)$$

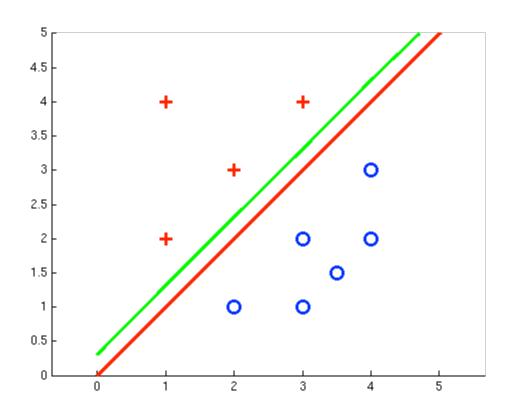
Log

$$\sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) \right) \right)$$



$$\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}
eq \mathbf{y}_i^*} \left(\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y})\right)$$

Separators: Comparison

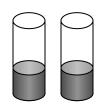


Conditional vs Joint Likelihood

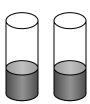
Example: Sensors

Reality

Raining



Sunny



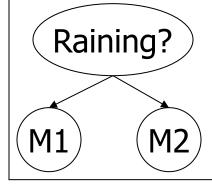
$$P(+,+,r) = 3/8$$
 $P(-,-,r) = 1/8$

$$P(-,-,r) = 1/8$$

$$P(+,+,s) = 1/8$$
 $P(-,-,s) = 3/8$

$$P(-,-,s) = 3/8$$

NB Model



NB FACTORS:

•
$$P(s) = 1/2$$

•
$$P(+|s) = 1/4$$

$$P(+|r) = 3/4$$

PREDICTIONS:

$$P(r,+,+) = (\frac{1}{2})(\frac{3}{4})(\frac{3}{4})$$

$$P(s,+,+) = (\frac{1}{2})(\frac{1}{4})(\frac{1}{4})$$

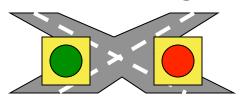
$$P(r|+,+) = 9/10$$

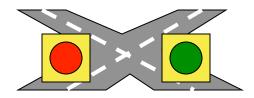
$$P(s|+,+) = 1/10$$

Example: Stoplights

Reality

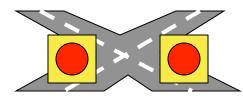
Lights Working





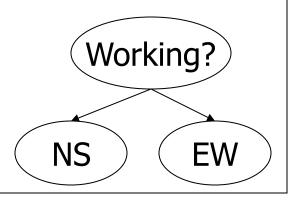
$$P(r,g,w) = 3/7$$

Lights Broken



$$P(r,r,b) = 1/7$$

NB Model



NB FACTORS:

$$P(w) = 6/7$$

•
$$P(r|w) = 1/2$$

•
$$P(g|w) = 1/2$$

•
$$P(b) = 1/7$$

•
$$P(r|b) = 1$$

•
$$P(g|b) = 0$$

Example: Stoplights

What does the model say when both lights are red?

```
■ P(b,r,r) = (1/7)(1)(1) = 1/7 = 4/28

■ P(w,r,r) = (6/7)(1/2)(1/2) = 6/28 = 6/28

■ P(w|r,r) = 6/10!
```

- We'll guess that (r,r) indicates lights are working!
- Imagine if P(b) were boosted higher, to 1/2:

```
■ P(b,r,r) = (1/2)(1)(1) = 1/2 = 4/8

■ P(w,r,r) = (1/2)(1/2)(1/2) = 1/8 = 1/8

■ P(w|r,r) = 1/5!
```

Changing the parameters bought accuracy at the expense of data likelihood