Algorithms for NLP

Classificationt—

Taylor Berg-Kirkpatrick — CMU

Slides: Dan Klein — UC Berkeley

Efficient Parsing for
Lexical Grammars

Lexicalized Trees

Add “head words” to
each phrasal node

= Syntactic vs. semantic
heads

= Headship not in (most)
treebanks

= Usually use head rules,
e.g..

= NP:
= Take leftmost NP
= Take rightmost N*
= Take rightmost JJ
= Take right child

= VP:
= Take leftmost VB*
= Take leftmost VP
= Take left child

NP VP
N TN
ll!e lav.'lyer I /\
questioned DT NN
tllxe winlxess
Y
S(questioned)
NP(lawyer) VP(questioned)
DT(the) NN(lawyer)] /\
| | Vt(questioned) NP(witness)
the lawyer |
questioned

DT(the) NN(witness)
| |

the witness

Eﬁ Lexicalized PCFGs?

= Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

= Never going to get these atomically off of a treebank

= Solution: break up derivation into smaller steps

VP (saw) VP (saw) VP (saw) VP (saw)

— — T I

VBD (saw) VBD (saw) {np-c()} VBD (saw) NP-C() NP() VBD (saw) NP-C(her) NP (today)

%

Lexical Derivation Steps

= A derivation of a local tree [Collins 99]

VP (saw)
/ Choose a head tag and word
VBD (saw)
VP (saw)
/ Choose a complement bag
VBD (saw) {Np-C()}
VP (saw)
m Generate childrenW
VBD (saw) NP-C() NP()
VP (saw)

m Recursively derive children

VBD (saw) NP-C(her) NP(today)

%

Lexicalized CKY

(VP->VBD...NP °) [saw]

/\

(VP->VBD °) [saw] NP [her]

bestScoresxii‘j,h)

if (J = 1i+1)
return tagScore(X,s[1]) f?’
else
return
maﬁmmgfmscore(X[h] ->Y[h] Z[h’']
bestScore(Y¥,i,k,h) *
bestScore(Z,k,j,h’)
khm?.i:yzscore(X[h] ->Y[h'] Z[h]
bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)

/7
1
U
1
/7
7
Vi

Y[h] Z[n

1
J

%

Quartic Parsing

= Turns out, you can do (a little) better [Eisner 99]

= Gives algorithm
= Still prohibitive in practice if not pruned

%

Pruning with

= The Collins parser prunes with per-
cell beams [Collins 99]
= Essentially, run the O(n>) CKY

= Remember only a few hypotheses for
each span <i,j>.

= |f we keep K hypotheses at each span,
then we do at most O(nKZ) work per
span (why?)

= Keeps things more or less cubic (and in)

ractice is more like linear!
P N6 (S

= Also: certain spans are forbidden
entirely on the basis of punctuation
(crucial for speed)

~

Pruning with a PCFG

%

" The thmia.lqwrhprunes using a two-pass, coarse-
to-fine approach [Charniak 97+]

= First, parse with the base grammar

= For each X:[i,j] calculate P(X]|i,j,s)
= This isn’t trivial, and there are clever speed ups

= Second, do the full O(n>) CKY
= Skip any X :[i,j] which had low (say, < 0.0001) posterior

= Avoids almost all work in the second phase!

= Charniak et al 06: can use more passes 6’
= Petrov et al 07: can use many more passes é

Results

= Stanford Parser — 86.3 (unlex / struct annotation)

= Collins 99 — 88.6 F1 (lexical)

= Charniak and Johnson 05 —89.7 / 91.3 F1 (lexical + rerank)
= McClosky et al 06 —92.1 F1 (lexical + rerank + self-train)

= Petrov et al 06 —90.7 F1 (unlex / latent vars)
= Petrov et al 10 -91.8 (unlex / latent vars + ensemble)

= Socher et al 13 —90.4 (unlex + neural rerank)
= Vinyals et al 15-90.5/92.1 (neural sequence + self-train)
= Dyer et al 16 —92.4 (neural shift-reduce)

...many more that are really cool (e.g. Hall and Klein 12,14)

Latent Variable PCFGs

Ef; The Game of Designing a Grammar

S
B
NP”S VP
| ——
PRP VBD NP"VP
| I —

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar

= Parent annotation [Johnson '98]

Ef; The Game of Designing a Grammar

PRP VBD NP-noise
| | —
She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins 99, Charniak "00]

Ef; The Game of Designing a Grammar

S
B
NP-1 VP
| ——
PRP VBD NP-2
I I —

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins 99, Charniak "00]
= Automatic clustering?

E& Latent Variable Grammars

Y. € eé) e)K?
X
)% RP-1 VBD-0 ADJP-0
| | —_
’-@ VP -X, . He was right

PRP VBD AD]JP

| | T~ _

He was right NP-1 VP-1_ -0
l — T |
PRP-0 VBD-0 ADJP-1 .
| | —
He was right

Parse Tree 7T

Sentence erivations

—— Grammar G

Sy — NP, VP,
SO — NP1 VPO
So — NP, VP,
S() — NP] VPl
S; — NP, VP

(S]_ —>NP1 VPl

NP, — PRPy
NP, — PRP,

Lexicon

NN N N N

N

PRP(]—)She

. PRPI —)She

VBD,; — was
VBD; — was
VBD, — was

Eﬁ Learning Latent Annotations

Backward

—

EM algorithm:

» Brackets are known
= Base categories are known

* Only induce subcategories
e 6) L .\
S[X1]

NP[X5] VR[X4] [X7]
| /]3\ | ‘
PRP[X3] VBD[X5] ADJP[Xg] .
| | —
He (was right)

Just like Forward-Backward for HMMs.
g — Elx l'l_,'f] ; E)x | T] = © Forward

%

Refinement of the DT tag

DT ¥
the (0.50)
a (0.24)
The (0.08)

~—p a(0.61) | t?the (0.80) this (0.39) " some (0.20)
the (0.19) The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)

DT-1 DT-2 DT-3 DT-4

%

Hierarchical refinement

the

4 BF AN
{6 N\
NN)
NV SO
Ve T NN
LS @ di Y Y
RN
L . zg‘ 3\
SN NN N)
The (0.08)

the (0.54)

ad %\ ,.2:??

The (0 %@;

%BT ? 473
<4 @gzza&-‘% ﬂ'g

/ S
that (U.15)

a (O 61)
the (0.19)
an (0.11)

the (O 80)
The (0.15)
a (0.01)

this (O 39)
that (0.28)
That (0.11)

ﬁcﬁnb (0.20)
all (0.19)
those (0.12)

W€ Hierarchical Estimation Results

©
o

|

\r

Parsing accuracy (F1)
oo (0]
N N

~N o
c O

~ ~
~ ()]
-\

' ' ' ' Model F1
100 300 500 @0 900 11 —
Total Number of gramma] Flat Training 87.3

Hierarchical Training | 88.4

%

Refinement of the , tag

= Splitting all categories equally is wasteful:

, (1.00)
-
, (1.00) , (1.00)
«— T «— T

, (1.00) , (1.00) , (1.00) , (1.00)

%

Adaptive Splitting

= Want to split complex cate

» |dea: split everythin
were least usef

‘.“‘.w.mmmt&(.

‘,&{,,‘w,n S
a (0.01) the (0.80)
the (0.19) The (0.15)
an (0.11) a(0.01)

the (0.96) | [The (0.93)
2 (0.01) A (0.02)
The (0.01) | | No (0.01)/

_

Adaptive Splitting Results

1

L
>
9
s
=]
5]
©
=) 84
B

80

——50% Merging «wHierarchical Training wmwe Flat Trainin

100 300 500 700 900

Previous 88.4

With 50% Merging | 89.5

1S1
100¥
X
dravHm
oYY
ouves
PLNI
dnavHm C=
don
OVN
OV ==
drNOD
0S
ddHM
1¥d
ANIS
XN
N¥d
dNHM
dO
yves

drav

dAav

dd
dA

_n_zT

40

Eﬁ Number of Phrasal Subcategories

S
dd
NAS

HN
¢~
[ol
say
M4

-gGYY- &~
1am
$dM
X3

g T
UM
1ad
SOd
[dM
Hgy
an

[$did
ddd
srr
ure
[20
SdNN
[1a

[dan
_ | zan

:‘7 HII_III_III_IJ_' HIDID N NN W N B B B e B e B s B s B s

- [@
j KER
_ [an

[98

[a9y
_ _ [NEA
_ | NN
_ I I I I - SNN
_ [rr
. : : dNNC=a

70

}f@ Number of Lexical Subcategories

%

Learned Splits

= Proper Nouns (NNP):

——
NNP-14 Oct. Nov. Serzt./>
[NNP-12 | ——dehT Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters |~
NNP-15 New San Wall —
NNP-3 York Francisco Street —
»= Personal pronouns (PRP):
PRP-0 It He I
PRP-1 it he they 3
PRP-2 it them him é

Learned Splits

%

= Relative adverbs (RBR):

RBR-0 further lower higher |<—
RBR-1 more less More |N—
RBR-2 earlier Earlier later <

= Cardinal Numbers (CD): —
CD-7 one two Three <
CD-4 1989 1990 1988 <
CD-11 million billion trillion ~4_
CD-0 1 50 100 >
CD-3 1 30 31
CD-9 78 58 34 ><

%

Final Results (Accuracy)

< 40 words all
F1 F1
m | Charniak&Johnson ‘05 (generative) 90.1 89.6
Z
@ Split / Merge (90.6) 90.1
Gra Dubey ‘05 76.3 -
2 Split / Merge 80.1
o Chiang et al. ‘02 80.0 76.6
T
< Split / Merge < 86.3) 83.4

Still higher numbers from reranking / self-training methods

Efficient Parsing for
Hierarchical Grammars

%

= Example: PP attachment

NP VP
PRF 2222272757 m
They /\/

Coarse-to-Fine Inference

\% PP-#).
| N
raised DT NN IN NP
] AN
a point of order

N\

%

Hierarchical Pruning

coarse: MNP wP | ..

IR

R[OS | g NP1 | DR | e | N pome UG [vPs [BRe] ..

split in two:

split in four:

5L

split in eight: ...

%

Bracket Posteriors

Influential
members
of

the
House

9,
&
<

)
8
20
.‘V

&
(S

SO

¢

and
Means
Committee

Ways
introduced

7%
'// '/

024’/ ,’

1947,
CHURBRAIIXN
‘ .

/

Wy

>
AR
KRB

P XA
’/ I '('”"/t 4 “““

AR)%
SEALIIER
A 100,
ISR RALS IS N
AT
RORALZLLIPIIK
7,4 '/’\‘Q.”“//ql“, s ‘/O."./)/ /'/‘.
000,00 0:030s W00\ 2%
KON 28%0%0 2 2 '0% % 11 183 %
KD IR "AQ,’///‘ (> “. "
COSERIAID SR
43 050, 20
A 00000202000483%:
AV NGO ,
R IR T AR oS
¢/ 9/ 4,

"
102 9 0g g0
PRK Rty &

A
CYOKMFND
SBL i
505 ‘0,4 BIIBLAAXRA
RIS LA %
IR ."/ (XK
VO e 00 N
VR QA
9
: 93 "9
v, ¢
DOELLGIE

legislation
that
would
restrict
how

the

new

s&l
creating
another
potential
obstacle
S

sale

of

sick

1621 min «
111 min <«
35 min <

15 min <

(no search error)<«

Results

= Stanford Parser — 86.3 (unlex / struct annotation)
= Collins 99 — 88.6 F1 (lexical)
» Charniak and Johnson 05 —89.7 / 91.3 F1 (lexical «Terank)

= McClosky et al 06 —92.1 F1 (lexical + rerank + self-tfain
-

—

= Petrov et al 06 —90.7 F1 (unlex / latent vars) <—
= Petrov et al 10 -91.8 (unlex / latent vars + ensemble)
=

Socher et al 13 —90.4 (unlex + neural rerank)
Vinyals et al 15-90.5/ 92.1 (neural sequence + self-train)
Dyer et al 16 — 92.4 (neural shift-reduce)

...many more that are really cool (e.g. Hall and Klein 12,14)

Parse Reranking

%

= Assume the number of parses is very small

= We can represent each parse T as a feature vector ¢(T)
= Typically, all local rules are features

= Also non-local features, like how right-branching the overall tree is
[Charniak and Johnson 05] gives a rich set of features

VP

,_:Zb\m l]@ Resuli:\s‘ D— W%ﬁb%

ce

= Stanford Parser — 86.3 (unlex / struct annotatlon)

= Collins 99 — 88.6 F1 (lexical)

= Charniak and Johnson 05 —89.7 / 91.3 F1 (lexical + rerank)
= McClosky et al 06 —92.1 F1 (lexical + rerank + self-train)

= Petrov et al 06 —90.7 F1 (unlex / latent vars)
= Petrov et al 10 -91.8 (unlex / latent vars + ensemble)

= Socheretal 13-90.4 X + neural rerank)

o —=* Vinyals et al 15-90.579Z2. T (neural sequence + self-train)

= Dyer etal 16 —92.4 (neural shift-reduce)
—7

...many more that are really cool (e.g. Hall and Klein 12,14)

%

Shift-Reduce Parsers

Another way to derive a tree:

Remaining Text

the dog saw

Parsing

N
NP PP
N\
Det P NP
z|1 I\

n Det

=

N
I
man

k

Q-
2

I
the p

= No useful dynamic programming search
= Can still use beam search [Ratnaparkhi 97]

Results

= Stanford Parser — 86.3 (unlex / struct annotation)

= Collins 99 — 88.6 F1 (lexical)

= Charniak and Johnson 05 —89.7 / 91.3 F1 (lexical + rerank)
= McClosky et al 06 —92.1 F1 (lexical + rerank + self-train)

= Petrov et al 06 —90.7 F1 (unlex / latent vars)
= Petrov et al 10 -91.8 (unlex / latent vars + ensemble)

= Socher et al 13 -90.4 (unlex + neural rerank)
= Vinyals et al 15-90.5/92.1 (neural sequence + self-train)
= Dyer et al 16 —92.4 (neural shift-reduce)

...many more that are really cool (e.g. Hall and KIeinﬁ,M)
—

g —

Other Syntactic Models

Dependency Parsing

= Lexicalized parsers can be seen as producing dependency trees

S(questioned)
questioned
/ \
NP(lawyer) VP(questioned) lawyer witness
DT(the) NN(lawyer)) _ . l l
| | Vt(questioned) NP(witness) the the
the lawyer |

questioned DT(the) NN(witness)
| |

the witness

= Each local binary tree corresponds to an attachment in the dependency
graph

Dependency Parsing

%

= Pure dependency parsing is only cubic [Eisner 99]

Y[h] Z[h

\
\
\
\
\
AY

i h Kk h j

= Some work on non-projective dependencies

= Common in, e.g. Czech parsing
= Can do with MST algorithms [McDonald and Pereira 05]

NN NN

root John saw a dog yesterday which was a Yorkshire Terrier

Tree Insertion Grammars

%

= Rewrite large (possibly lexicalized) subtrees in a single step

NP Aux

The post office will

as incentives

o

discounts and service concessions

= Formally, a tree-insertion grammar

= Derivational ambiguity whether subtrees were generated atomically
or compositionally

= Most probable parse is NP-complete

%

Tree-adjoining grammars

= Start with /ocal trees

= Caninsert structure
with adjunction
operators

= Mildly context-
sensitive

= Models long-distance
dependencies
naturally

= .. aswell as other
weird stuff that CFGs
don’t capture well
(e.g. cross-serial
dependencies)

S
NP VP NP
| NMP N |
NNP P VB NP NNS
_ MD VP | |
Qintex | sell assets
would
S
/\
........ 'NP“.’/\/P\
.................... VB 3 NP
3 VP SN
| N sell ™.
Nl|\lP MID VP PI|RT N|P
Qintex would R|P Nll\lS
off assets

%

CCG Parsing

= Combinatory John F NP
Categorial Grammar
= Fully (mono-) shares = NP
lexicalized grammar
= Categories encode buyS = (S\NP)/NP

argument sequences
= Very closely related Sleeps - S\NP

to the lambda well F (S\NP)\ (S\NP)

calculus (more later)

= Can have spurious
ambiguities (why?) S
N
NP S\NP
| . ~
John (S\NP)/NP NP
|

buys shares

Classification

%

Classification

" Automatically make a decision about inputs
= Example: document — category
= Example: image of digit — digit
= Example: image of object — object type
= Example: query + webpages — best match
= Example: symptoms — diagnosis

" Three main ideas
» Representation as feature vectors / kernel functions
= Scoring by linear functions
= Learning by optimization

%

Some Definitions

INPUTS

CANDIDATE
SET

CANDIDATES

TRUE
OUTPUTS

FEATURE
VECTORS

X4 close the
y (X) {door, table, ...}

Yy table

y;k door

f(x,y) [00100010000O0]

/

X_;="“the” A y="door”

X_1=IIthe’, A y=lltab|e”

t

“close” in x A y="door”

y occurs in x

Features

Block Feature Vectors

%

= Sometimes, we think of the input as having features, which
are multiplied by outputs to form the candidates

X ... win the election ...
&
uf(X)n [1 O 1 O]
“win” — \“election”
&

... win the election ...

f(SPORTS)=[10100000000Q0]

f(POLITICS) =[000010100000

... win the election .

f(OTHER) =[000000001010

E& Non-Block Feature Vectors

= Sometimes the features of candidates cannot be
decomposed in this regular way

S
= Example: a parse tree’s features may be the productiogs™ vp
present in the tree

NP
S S
f(NP VlP)
S
N N Vv V|P

S

f(NP VP)
| P
N V

N \
VP
__—

V N

= Different candidates will thus often share features
= \We'll return to the non-block case later

Linear Models

Linear Models: Scoring

%

* |nalinear model, each feature gets a weight w

... win the election ...
f(POLITICS)=[0 0 O O 1 O 1 O 0O 0 0 O
... win the election ...
f(SPORTS)=[1 O 1 O O O O O O O 0 o0
w=[1 1-1-2 1-1 1 -2 -2 -1 -1 1]

= We score hypotheses by multiplying features and weights:

score(y,w) = w ' £(y)

f(POLITICSY=[0 0 0 O 1 O 1 0 0 O 0 0

w=[1l 1-1-2 1-1 1-2-2-1-1 1]

... win the election ...

score(POLITICS,w) =1x14+1x1=2

}ﬁ Linear Models: Decision Rule

" The linear decision rule:

p’rediCtiOn('”Winthee/edion"') W) — arg maX WTf(Y)

... win the election ...

yeY(x)

score(SPORTS,w) =1x14+(-1)x1=0

... win the election ...

score(POLITICS,w) =1x14+1x1=2

... win the election ...

score(OTHER,w) = (—2) x 1

<=

(1) x1=-3

... win the election ...

p’]"@d?;Ct’[;O’ﬂ, (win the election ..., W) = POL[T[CS

= We've said nothing about where weights come from

%

" Important special case: binary classification

Binary Classification

= Classes are y=+1/-1 W
BIAS : -3
f(X, —1) == —f(X, 1) free : 4
money : 2
f(x) = 2f(x,+1) -,
o 2
= Decision boundary is £ +1 = SPAM
a hyperplane 1
WTf(X> —0 -1 = HAM ;
0 1 free

%

Multiclass Decision Rule

* |f more than two classes: w ' f(y1)
.] biggest
= Highest score wins

= Boundaries are more —
complex

= Harder to visualize wTf(y3) \ w ! f(y3)
biggest

biggest

prediction(x;, w) = argmaxw ' f;(y)
yeY

= There are other ways: e.g. reconcile pairwise decisions

Learning

E& Learning Classifier Weights

= Two broad approaches to learning weights

= Generative: work with a probabilistic model of the data,
weights are (log) local conditional probabilities

= Advantages: learning weights is easy, smoothing is well-understood,
backed by understanding of modeling

= Discriminative: set weights based on some error-related
criterion

= Advantages: error-driven, often weights which are good for
classification aren’t the ones which best describe the data

= We'll mainly talk about the latter for now

%

How to pick weights?

= Goal: choose “best” vector w given training data
= For now, we mean “best for classification”

= The ideal: the weights which have greatest test set
accuracy / F1 / whatever

= But, don’t have the test set
= Must compute weights from training set

= Maybe we want weights which give best training set
accuracy?

= Hard discontinuous optimization problem

= May not (does not) generalize to test set x
= Easy to overfit

Though, min-error
training for MT
does exactly this.

E& Minimize Training Error?

= A loss function declares how costly each mistake is
6i(y) = £(y,y;)

= E.g.0 loss for correct label, 1 loss for wrong label

= Can weight mistakes differently (e.g. false positives worse than false
negatives or Hamming distance over structured labels)

= We could, in principle, minimize training loss:

min Z 0; (arg}rfnax Wsz‘(Y))

(2

= This is a hard, discontinuous optimization problem

Eﬁ Linear Models: Perceptron

" The perceptron algorithm
= |teratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

* The (online) perceptron algorithm:
= Start with zero weights w

W
= Visit training instances one by one
= Try to classify f(*
A Yi)
y = arg maxw ' f(y) ‘ £(5)
yeV(x) Y

= |f correct, no change!
= |f wrong: adjust weights

w — w + f(y))

w—w — f(¥) £(y")

Eﬁ Example: “Best” Web Page

" 2 0 0 ...

x; = “Apple Computers”

Apple =

From Wikipedia, the free encyclopedia
This article i about the fruit. For the electronics and software company,
f see Apple Inc... For other uses, see Apple (disambiguation).

. The apple is the pomaceous fuit of e — O 3 5 O O 'W'
1 the apple tree, species Malus . o o o

domestica in the rose family .5 A
Rosaceae. It is one of the most widely T
cultivated tree fruits. The tree is small
and deciduous, reaching 3 to 12
metres (9.8 to 39 f) tall, with a broad
often densely twiggy crown [The
leaves are alternately amranged simple

Apple Inc. =

From Wikipedia, the free encyclopedia
Redirected from Apple Computer

Apple Inc. Apple Inc.

f;)=1[08421 ... T

w—w+f(y;) — f(¥)
w = [1.5

)

%

Examples: Perceptron

= Separable Case

e 8 =« % o 8 vl 2 &

1 1 1 1 1 1 | I
- 0 ®» 1 2 2 3 I 3 4 & 5 B

74

E& Perceptrons and Separability

= A data set is separable if some Separable
parameters classify it perfectly +
o
- 'y,
= Convergence: if training data - - .
separable, perceptron will separate - _
(binary case) _
= Mistake Bound: the maximum Non-Separable
number of mistakes (binary case)
related to the margin or degree of _ * +
separability LI
= o

%

Examples: Perceptron

= Non-Separable Case

S
ol
alt
BEH-
FH
25|
2l
s

nh

OHH-

1]

1 1 1 1 1 1
0 0 1 1 2 2 3 3 4 4] 3 6

%

Issues with Perceptrons

Overtraining: test / held-out accuracy
usually rises, then falls
= Qvertraining isn’t the typically discussed

source of overfitting, but it can be
important

Regularization: if the data isn’t
separable, weights often thrash around
= Averaging weight vectors over time can
help (averaged perceptron)
= [Freund & Schapire 99, Collins 02]

Mediocre generalization: finds a “barely”

separating solution

accuracy

training

test
held-out

iterations

E& Problems with Perceptrons

= Perceptron “goal”: separate the training data

Vi, vy =y' w! fi(y) >w' f(y)

1. This may be an entire 2. Or it may be impossible
feasible space

Margin

%

= What do we want from our weights?
= Depends!

Objective Functions

= So far: minimize (training) errors:

7

Z step <waZ-(y,2<) — max WTfi(y)>

YFEY;

T) T
. w £(y") — maxw f;(y)
* This is the “zero-one loss” Z vEY;

= Discontinuous, minimizing is NP-complete
= Not really what we want anyway

= Maximum entropy and SVMs have other
objectives related to zero-one loss

%

Linear Separators

= Which of these linear separators is optimal?

81

E& Classification Margin (Binary)

= Distance of x; to separator is its margin, m;
= Examples closest to the hyperplane are support vectors
= Margin y of the separator is the minimum m

Classification Margin

%

= For each example x; and possible mistaken candidate y, we avoid
that mistake by a margin m/y) (with zero-one loss)

m;(y) = w' fi(y?) —w ' f;(y)

= Margin y of the entire separator is the minimum m

¥ = min (Wsz‘(Y%k) — max WTfi(Y))
v YFY;

= |tisalso the largesty for which the following constraints hold

Vi, Vy wai(Y%k) >w ! £;,(y) + 14 (y)

%

= Separable SVMs: find the max-margin w

O ify=y?
max li(y) = . :
wli=1 | ‘ {1 ify #y!

Maximum Margin

¥

Vi, Yy w! fi(y5) >w! fi(y) + 14 (y)

+ & + & + &
- + - + +
- + - + - +

= Can stick this into Matlab and (slowly) get an SVM
= Won’t work (well) if non-separable

%

Why Max Margin?

= Why do this? Various arguments:

= Solution depends only on the boundary cases, or support vectors (but
remember how this diagram is broken!)

= Solution robust to movement of support vectors

= Sparse solutions (features not in support vectors get zero weight)
= Generalization bound arguments

= Works well in practice for many problems

Support vectors

E& Max Margin / Small Norm

= Reformulation: find the smallest w which separates data

. max -y
Remember this
' — || W||=1

condition? . T § —
Vi, y w £;(y;) >w £;(y) +4(y)

= vyscaleslinearlyinw, soif | |w]| | isn’t constrained, we can
take any separating w and scale up our margin

v = min [w' iy - w! E@)]/GG)
L,YFY;

" |nstead of fixing the scale of w, we can fixy=1
1
min =||w]||*
w2

Vi,y w'f(y?) >w f;(y)+ 14(y)

E& Soft Margin Classification

= What if the training set is not linearly separable?

= Slack variables §; can be added to allow misclassification of difficult or
noisy examples, resulting in a soft margin classifier

%

Maximum Margin

Note: exist other
choices of how to
penalize slacks!

Non-separable SVMs
= Add slack to the constraints
= Make objective pay (linearly) for slack:

w,§ 2
Vi,y, w! £(yD)+eE > w fi(y) + 4(y)

1
min J||w||*+C 3¢,

= Cis called the capacity of the SVM — the smoothing
knob

Learning:
= Can still stick this into Matlab if you want
= Constrained optimization is hard; better methods!
= We'll come back to this later

%

Maximum Margin

Likelihood

g Linear Models: Maximum Entropy

= Maximum entropy (logistic regression)
= Use the scores as probabilities:

exp(w ' f(y)) « Make
>y exp(wE(y)) Re¥itiyfize

P(ylx,w) =

= Maximize the (log) conditional likelihood of training data

exp(w ' £;(y})))
>y exp(w ! f;(y))

L(w) = log H P(y;|x;, w) = Z log (

=Y <waz~(y;f) —log) exp(waz-(y)))
i Yy

%

Maximum Entropy I

= Motivation for maximum entropy:
= Connection to maximum entropy principle (sort of)

= Might want to do a good job of being uncertain on noisy
cases...

= ..in practice, though, posteriors are pretty peaked

= Regularization (smoothing)
max (WTfi(Yf) — log ZGXD(WTfi(Y))) —k||w||?
) y

min kl|w|[*=>" (Wsz’(Y%k) — log Zexp(wai(y))>
y

1

%

Maximum Entropy

Loss Comparison

%

Log-Loss

= |[f we view maxent as a minimization problem:

min kllw|]24+>" - (WTfi(yE‘) —log}" exp(wai(y)))
) y

= This minimizes the “log loss” on each example

N
— (wai(yf) — log Zexp(wai(y))> = —log P(y;|x;, W)
y

step <wai(yff) — MaX WTfi(Y)>
YFY;

((((((((((((TECPREL H =

= One view: log loss is an upper bound on zero-one loss

Remember SVMs...

%

= \We had a constrained minimization
1o
rpnggllwll +C§ij£z
Vi,y, w f;(y5) +&>w! fi(y) + 4(y)
= _..but we can solve for &,

Vi,y, & >w fi(y)+£4(y) —w iy
vi, & = max (Wsz'(Y) + fz'(}’)) —w £y
= Giving

min
W

W2+ 03 (max (w6 + 6(9) - w8)

N| B~

%

H | nge LOSS Plot really only right

In binary case

= Consider the per-instance objective:

min kllwl+" (m;x (w'f(y) + t:(v)) - WTfi(YE‘))

= This is called the “hinge loss” \

= Unlike maxent / log loss, you stop
gaining objective once the true label
wins by enough

= You can start from here and derive the
SVM objective

= Can solve directly with sub-gradient

decent (e.g. Pegasos: Shalev-Shwartz et

Tf(yi) - f;
al 07) wi(y}) — max (w ()

Eﬁ Max vs “Soft-Max” Margin

= SVMs
min k|lw|[2=Y" (wa@-(yj) — max (WTfi(Y) + Ei(y)))
1 N _
"
You can make this zero
= Maxent
min k| lw|[2 =Y (WTfi(Yf) —log) exp (WTfi(Y)))
) u y -
N

... but not this one

= Very similar! Both try to make the true score better
than a function of the other scores

= The SVM tries to beat the augmented runner-up
= The Maxent classifier tries to beat the “soft-max”

E{i Loss Functions: Comparison

= Zero-One Loss

eeeeeeeeeeee
11111111111111111111111
xxxxxxxxxx

7

Z step <wai(yff) — max Wsz‘(Y))

YFEY;

= Hinge

> (WTEGD — max (W) + 4())

(

= |log

Z (WTfi(yf) — log Z exp (WTfZ—(y)))
y

()

T * T
w fZ ;) — MaXx (w fz
(v) — max (w' ()

Separators: Comparison

Conditional vs
Joint Likelihood

%

Example: Sensors

Reality
Raining

@@

Sunny

@@

P(+,+,r) =3/8 P(-,-,r=1/8 P(+,+,s) = 1/8 -,S) =3/8

NB Model NB FACTORS:

= P(s) =1/2
w = P(+|s)=1/4
@ @ = P(+|r)=3/4

PREDICTIONS:

2(r,+,+) = (/2)(%)(%4)
(s, +,+) = (/2)(Va) (%)
P(r|+,+) = 9/10
P(s|+,+) =1/10

%

Example: Stoplights

Reality

Lights Working

P(g,r,w) = 3/7

Jo3e, eide

P(rg,w) = 3/7

Lights Broken

Jo3Fe

P(rrb) = 1/7

NB Model

(oring?
s Cew

NB FACTORS:
= P(w)=6/7
= P(rlw)=1/2
= P(g|lw)=1/2

= P(b)=1/7
= P(r|b) = 1
« P(g|b)=0

Example: Stoplights

%

What does the model say when both lights are red?
= P(b,r,r) =(1/7)(1)(1) =1/7 =4/28

= P(w,r,r) =(6/7)(1/2)(1/2) =6/28 =6/28

= P(w]|r,r)=6/10!

We’'ll guess that (r,r) indicates lights are working!

Imagine if P(b) were boosted higher, to 1/2:

= P(b,r,r) =(1/2)(1)(1) =1/2 =4/8

= P(w,r,r) =(1/2)(1/2)(1/2) =1/8 =1/8

= P(w]|r,r)=1/5!

Changing the parameters bought accuracy at the
expense of data likelihood

