Algorithms for NLP

Classification |l

Taylor Berg-Kirkpatrick — CMU
Slides: Dan Klein — UC Berkeley

Results

= Stanford Parser — 86.3 (unlex / struct annotation)

= Collins 99 — 88.6 F1 (lexical)

= Charniak and Johnson 05 —89.7 / 91.3 F1 (lexical + rerank)
= McClosky et al 06 —92.1 F1 (lexical + rerank + self-train)

= Petrov et al 06 —90.7 F1 (unlex / latent vars)
= Petrov et al 10 -91.8 (unlex / latent vars + ensemble)

= Socher et al 13 -90.4 (unlex + neural rerank)
= Vinyals et al 15-90.5/92.1 (neural sequence + self-train)
= Dyer et al 16 —92.4 (neural shift-reduce)

...many more that are really cool (e.g. Hall and Klein 12,14)

%

Shift-Reduce Parsers

Another way to derive a tree:

Remaining Text

the dog saw

Parsing

N
NP PP
N\
Det P NP
z|1 I\

N
I
man in Det N

||
the park

= No useful dynamic programming search
= Can still use beam search [Ratnaparkhi 97]

Other Syntactic Models

Dependency Parsing

= Lexicalized parsers can be seen as producing dependency trees

S(questioned)
questioned
/ \
NP(lawyer) VP(questioned) lawyer witness
DT(the) NN(lawyer)) _ . l l
| | Vt(questioned) NP(witness) the the
the lawyer |

questioned DT(the) NN(witness)
| |

the witness

= Each local binary tree corresponds to an attachment in the dependency
graph

Dependency Parsing

%

" Pure dependency parsing is only cubic [Eisner 99]

Y[h] Z[h

\
\
\
\
\
AY

i h Kk h j

= Some work on non-projective dependencies

= Common in, e.g. Czech parsing
= Can do with MST algorithms [McDonald and Pereira 05]

AN DN AN

root John saw a dog yesterday which was a Yorkshire Terrier

Tree Insertion Grammars

%

= Rewrite large (possibly lexicalized) subtrees in a single step

NP Aux

The post office will

as incentives

o

discounts and service concessions

= Formally, a tree-insertion grammar

= Derivational ambiguity whether subtrees were generated atomically
or compositionally

= Most probable parse is NP-complete

%

Tree-adjoining grammars

= Start with /ocal trees

= Caninsert structure
with adjunction
operators

= Mildly context-
sensitive

= Models long-distance
dependencies
naturally

= .. aswell as other
weird stuff that CFGs
don’t capture well
(e.g. cross-serial
dependencies)

S
NP VP NP
| NMP N |
NNP P VB NP NNS
_ MD VP | |
Qintex | sell assets
would
S
/\
........ 'NP“.’/\/P\
.................... VB 3 NP
3 VP SN
| N sell ™.
Nl|\lP MID VP PI|RT N|P
Qintex would R|P Nll\lS
off assets

%

CCG Parsing

= Combinatory John F NP
Categorial Grammar
= Fully (mono-) shares = NP
lexicalized grammar
= Categories encode buyS = (S\NP)/NP

argument sequences
= Very closely related Sleeps - S\NP

to the lambda well F (S\NP)\ (S\NP)

calculus (more later)

= Can have spurious
ambiguities (why?) S
N
NP S\NP
| . ~
John (S\NP)/NP NP
|

buys shares

Classification

%

Classification

" Automatically make a decision about inputs
= Example: document — category
= Example: image of digit — digit
= Example: image of object — object type
= Example: query + webpages — best match
= Example: symptoms — diagnosis

" Three main ideas
» Representation as feature vectors / kernel functions
= Scoring by linear functions
= Learning by optimization

%

Some Definitions

INPUTS

CANDIDATE
SET

CANDIDATES

TRUE
OUTPUTS

FEATURE
VECTORS

X4 close the
y (X) {door, table, ...}

Yy table

y;k door

f(x,y) [00100010000O0]

/

X_;="“the” A y="door”

X_1=IIthe’, A y=lltab|e”

t

“close” in x A y="door”

y occurs in x

Features

Feature Vectors

= Example: web page ranking (not actually classification)

x; = "Apple Computers”

£ (

Apple =

From Wikipedia, the free encyclopedia

This article is about the fruit. For the electronics and software company,

see Apple Inc.. For other uses, see Apple (disambiguation).

The apple is the pomaceous fruit of
the apple tree, species Malus
domestica in the rose family
Rosaceae. It is one of the most widely
cultivated tree fruits. The tree is small
and deciduous, reaching 3 to 12
metres (9.8 to 39 ft) tall, with a broad,
often densely twiggy crown.['] The
leaves are alternately arranged simple

Apple

)=[0.3500 ...

Apple Inc. -

From Wikipedia, the free encyclopedia
Redirected from Apple Computer

Apple Inc., Apple Inc.

)=1[08421 ...

Block Feature Vectors

%

= Sometimes, we think of the input as having features, which
are multiplied by outputs to form the candidates

X ... win the election ...
&
uf(X)n [1 O 1 O]
“win” — \“election”
&

... win the election ...

f(SPORTS)=[10100000000Q0]

f(POLITICS) =[000010100000

... win the election .

f(OTHER) =[000000001010

E& Non-Block Feature Vectors

= Sometimes the features of candidates cannot be
decomposed in this regular way

S
= Example: a parse tree’s features may be the productiogs™ vp
present in the tree

NP
S S
f(NP VlP)
S
N N Vv V|P

S

f(NP VP)
| P
N V

N \
VP
__—

V N

= Different candidates will thus often share features
= \We'll return to the non-block case later

Linear Models

Linear Models: Scoring

%

* |nalinear model, each feature gets a weight w

... win the election ...
f(POLITICS)=[0 0 O O 1 O 1 O 0O 0 0 O
... win the election ...
f(SPORTS)=[1 O 1 O O O O O O O 0 o0
w=[1 1-1-2 1-1 1 -2 -2 -1 -1 1]

= We score hypotheses by multiplying features and weights:

score(y,w) = w ' £(y)

f(POLITICSY=[0 0 0 O 1 O 1 0 0 O 0 0

w=[1l 1-1-2 1-1 1-2-2-1-1 1]

... win the election ...

score(POLITICS,w) =1x14+1x1=2

}ﬁ Linear Models: Decision Rule

" The linear decision rule:

p’rediCtiOn('”Winthee/edion"') W) — arg maX WTf(Y)

... win the election ...

yeY(x)

score(SPORTS,w) =1x14+(-1)x1=0

... win the election ...

score(POLITICS,w) =1x14+1x1=2

... win the election ...

score(OTHER,w) = (—2) x 1

<=

(1) x1=-3

... win the election ...

p’]"@d?;Ct’[;O’ﬂ, (win the election ..., W) = POL[T[CS

= We've said nothing about where weights come from

%

" Important special case: binary classification

Binary Classification

= Classes are y=+1/-1 W
BIAS : -3
f(X, —1) == —f(X, 1) free : 4
money : 2
f(x) = 2f(x,+1) -,
o 2
= Decision boundary is £ +1 = SPAM
a hyperplane 1
WTf(X> —0 -1 = HAM ;
0 1 free

%

Multiclass Decision Rule

* |f more than two classes: w ' f(y1)
.] biggest
= Highest score wins

= Boundaries are more —
complex

= Harder to visualize wTf(y3) \ w ! f(y3)
biggest

biggest

prediction(x;, w) = argmaxw ' f;(y)
yeY

= There are other ways: e.g. reconcile pairwise decisions

Learning

E& Learning Classifier Weights

= Two broad approaches to learning weights

= Generative: work with a probabilistic model of the data,
weights are (log) local conditional probabilities

= Advantages: learning weights is easy, smoothing is well-understood,
backed by understanding of modeling

= Discriminative: set weights based on some error-related
criterion

= Advantages: error-driven, often weights which are good for
classification aren’t the ones which best describe the data

= We'll mainly talk about the latter for now

%

How to pick weights?

= Goal: choose “best” vector w given training data
= For now, we mean “best for classification”

= The ideal: the weights which have greatest test set
accuracy / F1 / whatever

= But, don’t have the test set
= Must compute weights from training set

= Maybe we want weights which give best training set
accuracy?

= Hard discontinuous optimization problem

= May not (does not) generalize to test set x
= Easy to overfit

Though, min-error
training for MT
does exactly this.

E& Minimize Training Error?

= A loss function declares how costly each mistake is
6i(y) = £(y,y;)

= E.g.0 loss for correct label, 1 loss for wrong label

= Can weight mistakes differently (e.g. false positives worse than false
negatives or Hamming distance over structured labels)

= We could, in principle, minimize training loss:

min Z 0; (arg}rfnax Wsz‘(Y))

(2

= This is a hard, discontinuous optimization problem

Eﬁ Linear Models: Perceptron

" The perceptron algorithm
= |teratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

* The (online) perceptron algorithm:
= Start with zero weights w

W
= Visit training instances one by one
= Try to classify f(*
A Yi)
y = arg maxw ' f(y) ‘ £(5)
yeV(x) Y

= |f correct, no change!
= |f wrong: adjust weights

w — w + f(y))

w—w — f(¥) £(y")

Eﬁ Example: “Best” Web Page

" 2 0 0 ...

x; = “Apple Computers”

Apple =

From Wikipedia, the free encyclopedia
This article i about the fruit. For the electronics and software company,
f see Apple Inc... For other uses, see Apple (disambiguation).

. The apple is the pomaceous fuit of e — O 3 5 O O 'W'
1 the apple tree, species Malus . o o o

domestica in the rose family .5 A
Rosaceae. It is one of the most widely T
cultivated tree fruits. The tree is small
and deciduous, reaching 3 to 12
metres (9.8 to 39 f) tall, with a broad
often densely twiggy crown [The
leaves are alternately amranged simple

Apple Inc. =

From Wikipedia, the free encyclopedia
Redirected from Apple Computer

Apple Inc. Apple Inc.

f;)=1[08421 ... T

w—w+f(y;) — f(¥)
w = [1.5

)

%

Examples: Perceptron

= Separable Case

e 8 =« % o 8 vl 2 &

1 1 1 1 1 1 | I
- 0 ®» 1 2 2 3 I 3 4 & 5 B

40

E& Perceptrons and Separability

= A data set is separable if some Separable
parameters classify it perfectly +
o
- 'y,
= Convergence: if training data - - .
separable, perceptron will separate - _
(binary case) _
= Mistake Bound: the maximum Non-Separable
number of mistakes (binary case)
related to the margin or degree of _ * +
separability LI
= o

%

Examples: Perceptron

= Non-Separable Case

S
ol
alt
BEH-
FH
25|
2l
s

nh

OHH-

1]

1 1 1 1 1 1
0 0 1 1 2 2 3 3 4 4] 3 6

%

Issues with Perceptrons

Overtraining: test / held-out accuracy
usually rises, then falls
= Qvertraining isn’t the typically discussed

source of overfitting, but it can be
important

Regularization: if the data isn’t
separable, weights often thrash around
= Averaging weight vectors over time can
help (averaged perceptron)
= [Freund & Schapire 99, Collins 02]

Mediocre generalization: finds a “barely”

separating solution

accuracy

training

test
held-out

iterations

E& Problems with Perceptrons

= Perceptron “goal”: separate the training data

Vi, vy =y' w! fi(y) >w' f(y)

1. This may be an entire 2. Or it may be impossible
feasible space

Margin

%

= What do we want from our weights?
= Depends!

Objective Functions

= So far: minimize (training) errors:

7

Z step <waZ-(y,2<) — max WTfi(y)>

YFEY;

T) T
. w £(y") — maxw f;(y)
* This is the “zero-one loss” Z vEY;

= Discontinuous, minimizing is NP-complete
= Not really what we want anyway

= Maximum entropy and SVMs have other
objectives related to zero-one loss

%

Linear Separators

= Which of these linear separators is optimal?

47

E& Classification Margin (Binary)

= Distance of x; to separator is its margin, m;
= Examples closest to the hyperplane are support vectors
= Margin y of the separator is the minimum m

Classification Margin

%

= For each example x; and possible mistaken candidate y, we avoid
that mistake by a margin m/y) (with zero-one loss)

m;(y) = w' fi(y?) —w ' f;(y)

= Margin y of the entire separator is the minimum m

¥ = min (Wsz‘(Y%k) — max WTfi(Y))
v YFY;

= |tisalso the largesty for which the following constraints hold

Vi, Vy wai(Y%k) >w ! £;,(y) + 14 (y)

%

= Separable SVMs: find the max-margin w

O ify=y?
max li(y) = . :
wli=1 | ‘ {1 ify #y!

Maximum Margin

¥

Vi, Yy w! fi(y5) >w! fi(y) + 14 (y)

+ & + & + &
- + - + +
- + - + - +

= Can stick this into Matlab and (slowly) get an SVM
= Won’t work (well) if non-separable

%

Why Max Margin?

= Why do this? Various arguments:

= Solution depends only on the boundary cases, or support vectors (but
remember how this diagram is broken!)

= Solution robust to movement of support vectors

= Sparse solutions (features not in support vectors get zero weight)
= Generalization bound arguments

= Works well in practice for many problems

Support vectors

E& Max Margin / Small Norm

= Reformulation: find the smallest w which separates data

. max -y
Remember this
' — || W||=1

condition? . T § —
Vi, y w £;(y;) >w £;(y) +4(y)

= vyscaleslinearlyinw, soif | |w]| | isn’t constrained, we can
take any separating w and scale up our margin

v = min [w' iy - w! E@)]/GG)
L,YFY;

" |nstead of fixing the scale of w, we can fixy=1
1
min =||w]||*
w2

Vi,y w'f(y?) >w f;(y)+ 14(y)

E& Soft Margin Classification

= What if the training set is not linearly separable?

= Slack variables §; can be added to allow misclassification of difficult or
noisy examples, resulting in a soft margin classifier

%

Maximum Margin

Note: exist other
choices of how to
penalize slacks!

Non-separable SVMs
= Add slack to the constraints
= Make objective pay (linearly) for slack:

w,§ 2
Vi,y, w! £(yD)+eE > w fi(y) + 4(y)

1
min J||w||*+C 3¢,

= Cis called the capacity of the SVM — the smoothing
knob

Learning:
= Can still stick this into Matlab if you want
= Constrained optimization is hard; better methods!
= We'll come back to this later

%

Maximum Margin

Likelihood

g Linear Models: Maximum Entropy

= Maximum entropy (logistic regression)
= Use the scores as probabilities:

exp(w ' f(y)) « Make
>y exp(wE(y)) Re¥itiyfize

P(ylx,w) =

= Maximize the (log) conditional likelihood of training data

exp(w ' £;(y})))
>y exp(w ! f;(y))

L(w) = log H P(y;|x;, w) = Z log (

=Y <waz~(y;f) —log) exp(waz-(y)))
i Yy

%

Maximum Entropy I

= Motivation for maximum entropy:
= Connection to maximum entropy principle (sort of)

= Might want to do a good job of being uncertain on noisy
cases...

= ..in practice, though, posteriors are pretty peaked

= Regularization (smoothing)
max (WTfi(Yf) — log ZGXD(WTfi(Y))) —k||w||?
) y

min kl|w|[*=>" (Wsz’(Y%k) — log Zexp(wai(y))>
y

1

%

Maximum Entropy

Loss Comparison

%

Log-Loss

= |[f we view maxent as a minimization problem:

min kllw|]24+>" - (WTfi(yE‘) —log}" exp(wai(y)))
) y

= This minimizes the “log loss” on each example

N
— (wai(yf) — log Zexp(wai(y))> = —log P(y;|x;, W)
y

step <wai(yff) — MaX WTfi(Y)>
YFY;

((((((((((((TECPREL H =

= One view: log loss is an upper bound on zero-one loss

Remember SVMs...

%

= \We had a constrained minimization
1o
rpnggllwll +C§ij£z
Vi,y, w f;(y5) +&>w! fi(y) + 4(y)
= _..but we can solve for &,

Vi,y, & >w fi(y)+£4(y) —w iy
vi, & = max (Wsz'(Y) + fz'(}’)) —w £y
= Giving

min
W

W2+ 03 (max (w6 + 6(9) - w8)

N| B~

%

H | nge LOSS Plot really only right

In binary case

= Consider the per-instance objective:

min kllwl+" (m;x (w'f(y) + t:(v)) - WTffi(y;‘))

= This is called the “hinge loss” \

= Unlike maxent / log loss, you stop
gaining objective once the true label
wins by enough

= You can start from here and derive the
SVM objective

= Can solve directly with sub-gradient

decent (e.g. Pegasos: Shalev-Shwartz et

Tf(yi) - f;
al 07) wi(y}) — max (w ()

Eﬁ Max vs “Soft-Max” Margin

= SVMs
min k|lw|[2=Y" (wa@-(yj) — max (WTfi(Y) + Ei(y)))
1 N _
"
You can make this zero
= Maxent
min k| lw|[2 =Y (WTfi(Yf) —log) exp (WTfi(Y)))
) u y -
N

... but not this one

= Very similar! Both try to make the true score better
than a function of the other scores

= The SVM tries to beat the augmented runner-up
= The Maxent classifier tries to beat the “soft-max”

E{i Loss Functions: Comparison

= Zero-One Loss

eeeeeeeeeeee
11111111111111111111111
xxxxxxxxxx

7

Z step <wai(yff) — max Wsz‘(Y))

YFEY;

= Hinge

> (WTEGD — max (W) + 4())

(

= |log

Z (WTfi(yf) — log Z exp (WTfZ—(y)))
y

()

T * T
w fZ ;) — MaXx (w fz
(v) — max (w' ()

Separators: Comparison

Conditional vs
Joint Likelihood

%

Example: Sensors

Reality
Raining

@@

Sunny

@@

P(+,+,r) =3/8 P(-,-,r=1/8 P(+,+,s) = 1/8 -,S) =3/8

NB Model NB FACTORS:

= P(s) =1/2
w = P(+|s)=1/4
@ @ = P(+|r)=3/4

PREDICTIONS:

2(r,+,+) = (/2)(%)(%4)
(s, +,+) = (/2)(Va) (%)
P(r|+,+) = 9/10
P(s|+,+) =1/10

%

Example: Stoplights

Reality

Lights Working

P(g,r,w) = 3/7

Jo3e, eide

P(rg,w) = 3/7

Lights Broken

Jo3Fe

P(rrb) = 1/7

NB Model

(oring?
s Cew

NB FACTORS:
= P(w)=6/7
= P(rlw)=1/2
= P(g|lw)=1/2

= P(b)=1/7
= P(r|b) = 1
« P(g|b)=0

Example: Stoplights

%

What does the model say when both lights are red?
= P(b,r,r) =(1/7)(1)(1) =1/7 =4/28

= P(w,r,r) =(6/7)(1/2)(1/2) =6/28 =6/28

= P(w]|r,r)=6/10!

We’'ll guess that (r,r) indicates lights are working!

Imagine if P(b) were boosted higher, to 1/2:

= P(b,r,r) =(1/2)(1)(1) =1/2 =4/8

= P(w,r,r) =(1/2)(1/2)(1/2) =1/8 =1/8

= P(w]|r,r)=1/5!

Changing the parameters bought accuracy at the
expense of data likelihood

Duals and Kernels

%

Nearest-Neighbor Classification

= Nearest neighbor, e.g. for digits:
= Take new example
= Compare to all training examples '1
= Assign based on closest example

= Encoding: image is vector of intensities:

A =(0.0000308070.1...00)

= Similarity function:
= E.g. dot product of two images’ vectors

LP~NQOQO~O

- T
sim(z,y) =2 y=) z;y;
i

Eﬁ Non-Parametric Classification

= Non-parametric: more examples means
(potentially) more complex classifiers

= How about K-Nearest Neighbor?

= We can be a little more sophisticated, averaging
several neighbors

= But, it’s still not really error-driven learning
= The magic is in the distance function

= Qverall: we can exploit rich similarity
functions, but not objective-driven learning

Eﬁ A Tale of Two Approaches...

= Nearest neighbor-like approaches
= Work with data through similarity functions
= No explicit “learning”

" Linear approaches
= Explicit training to reduce empirical error
= Represent data through features

= Kernelized linear models
= Explicit training, but driven by similarity!
= Flexible, powerful, very very slow

%

The Perceptron, Again

= Start with zero weights
= Visit training instances one by one
= Try to classify

y = arg mawafi(y)
yeY(x)

= |f correct, no change!
= |f wrong: adjust weights

w — w + £;(y})
w—w —£;(¥)
o

w—w+ (f;(y;) — £;(¥))

S
w— w4+ A ()

mistake vectors

%

= \What is the final value of w? w— W+ A;(y)

= Canit be an arbitrary real vector?

Perceptron Weights

= No! It’s built by adding up feature vectors (mistake vectors).
—_ /
w=A;y)+A2,)+ -

W = Z o;(y)Ai(y) mistake counts
LY

= Can reconstruct weight vectors (the primal representation) from
update counts (the dual representation) for each i

a; = (a;j(y1) oi(y2) .. ai(yn))

W = Z a;(y)A;(y)
i,y

gllual_lzencapimn

= Track mistake counts rather than weights

= Start with zero counts (o)

= For each instance x
= Try to classify

y =argmax > ay(y) A,) fi(y)
yEy(Xi) fi/7y/

y = arg maxw ' f(y)
yeY(x)

= |f correct, no change!
= |f wrong: raise the mistake count for this example and prediction

a;(y) «— a;(y) + 1 w— W+ A(¥)

E& Dual / Kernelized Perceptron

= How to classify an example x?
-
score(y) = w ' fi(y) = (Z O‘i’(y/>Ai’(y/)) £;(y)
i/,y/
= > ay(y") (/&) ()
7:/7y/
= > ay(y") (v " i(y) = £, (YD) ()

i’,y’

— / * /

= > ay(y") (K(yjny) = K&\ y))
z",y’

= |f someone tells us the value of K for each pair of candidates,
never need to build the weight vectors

E& Issues with Dual Perceptron

= Problem: to score each candidate, we may have to compare
to all training candidates

score(y) = Y ay(y) (K(yiny) — Ky, y))
iy’
= Very, very slow compared to primal dot product!

= One bright spot: for perceptron, only need to consider candidates we
made mistakes on during training

= Slightly better for SVMs where the alphas are (in theory) sparse

= This problem is serious: fully dual methods (including kernel
methods) tend to be extraordinarily slow

= Of course, we can (so far) also accumulate our weights as we
go...

Kernels: Who Cares?

%

= So far: a very strange way of doing a very simple
calculation

= “Kernel trick”: we can substitute any™* similarity
function in place of the dot product

" Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break.

E.g. convergence, mistake bounds. In practice,
illegal kernels sometimes work (but not always).

%

= Kernels implicitly map original vectors to higher dimensional
spaces, take the dot product there, and hand the result back

Some Kernels

= Linear kernel:
K(z,2)=2"2' = Zazzx;
)

= Quadratic kernel: , , 5
Klx,2)=(zx-2'+ 1)
= szacjx;:c; + QZmsz +1
i i
= RBF: infinite dimensional representation
K(z,2") = exp(—|lz — 2'||)

= Discrete kernels: e.g. string kernels, tree kernels

Tree Kernels (Colins and

a) S b) NP NP D N NP NP
T | N TN
NP/\VP [|) I\lI D N the apple [|) N D IT]
l\|I V/\NP the apple the apple
| | N

Jeff ate D N

the apple

= Want to compute number of common subtrees between T, T’

= Add up counts of all pairs of nodes n, n’
= Base: if n, n’ have different root productions, or are depth O:

C(ny,ne) =0

= Base:if n, n’ are share the same root production:
nc(ny)
Clni,mo) =X | (1+ Clch(na,), ch(n, j)))
J=1

83

E& Dual Formulation for SVMs

We want to optimize: (separable case for now)

1
2
Vi,y w'fi(y?) >w' f;(y) + 4(y)

min [|w]|2
W

This is hard because of the constraints
Solution: method of Lagrange multipliers
The Lagrangian representation of this problem is:

. 1 *
min rOT)ZaC); ANw,a) = EHWHQ — %ai(Y) (WTfi(y'i) —w ' fi(y) - fi(}’))

All we’ve done is express the constraints as an adversary which leaves our
objective alone if we obey the constraints but ruins our objective if we
violate any of them

Lagrange Duality

%

= We start out with a constrained optimization problem:
flw?) = min f(w)
g(w) >0

= We form the Lagrangian:
ANw,a) = f(w) —ag(w)

= This is useful because the constrained solution is a saddle
point of A (this is a general property):

* _ . _ .
f(w®) = min ranzaéd\(w,a) = r(;wza(%(min AN(w,)
— —~ /) — ~ _/

Primal problem in w Dual problem in o

Dual Formulation Il

%

= Duality tells us that

. 1 "
min max ~[|w[|® = > a;(y) (w £(y)) - w fi(y) — ti(y))
a>0 2 iy

has the same value as Z(Oz)
A
— { N
max min - S[Iw]|* = Y ai(y) (W () — w () - 4())
1,y

a>0 W 5

= This is useful because if we think of the o’s as constants, we have an
unconstrained min in w that we can solve analytically.

= Then we end up with an optimization over a instead of w (easier).

%

Dual Formulation Il

= Minimize the Lagrangian for fixed o/'s:

Aw,a) = 2IWl? = Y ai(y) (wThiyD) = w () — 4(y))
iy

ON(w,)

- = w— a(y) () —fi(y))
W i,y

8/\(W7a) W — O (vE) — f.
o =0 §> z; {(y) (D) — fi(y))

= So we have the Lagrangian as a function of only o’s:

min Z(a) =

a>0

2

— Z a; ()4 (y)
i,y

> i) (D) ~)
Ly

%

Back to Learning SVMs

= \We want to find o which minimize

2

— Z a; (y)4:(y)
i,y

minA(e) = = |13 eiy) (") — f:(y))
1,y

1
a>0 2 14

y

= This is a quadratic program:
= Can be solved with general QP or convex optimizers
= But they don’t scale well to large problems

= Cf. maxent models work fine with general optimizers (e.g.
CG, L-BFGS)

" How would a special purpose optimizer work?

%

Coordinate Descent |

min Z(a) = mln (£ (yi) — £(y))

a>0

— Z a; ()4 (y)
i,y

= Despite all the mess, Zis just a quadratic in each a(y)
= Coordinate descent: optimize one variable at a time

\/zm(y)) Z(ai(y))

0 0

= |f the unconstrained argmin on a coordinate is negative, just
clip to zero...

Coordinate Descent Il

%

= Ordinarily, treating coordinates independently is a bad idea, but here the
update is very fast and simple

Ei —WT fz ;k _fi
oy — max (o,%(y) L) v (56D <y>))

2
(B — ()|
= So we visit each axis many times, but each visit is quick

= This approach works fine for the separable case

= For the non-separable case, we just gain a simplex constraint and so we
need slightly more complex methods (SMO, exponentiated gradient)

y

What are the Alphas?

%

= Each candidate corresponds to a primal + 4
constraint +
- L, 2 - +
min —||lw C :
min Sl O3

Vi,y w (y5) > w fi(y) + £(y) — &

= In the solution, an a(y) will be: Support vectors

m Zero if that constraint is inactive
= Positive if that constrain is active
= j.e. positive on the support vectors

= Support vectors contribute to weights:

w =) a;(y) £y —)

1,y

Structure

%

Handwriting recognition

X y

| Sid4 =~ brace

Sequential structure

[Slides: Taskar and Klein 05]

}f@ CFG Parsing
X Y
)
/\
NP VP
WS o W) i
DT NN VBD NP
The screen was ‘ PNy v A
The screen was NP PP
a sea of red NN

DT NN IN NP

| | | |
a sea of NN

red

Recursive structure

%

Bilingual word alighnment

X vertu
de
What les
- - . nouvelle
What is the anticipated is propositions
cost of collecting fees ’ :h:)
under the new proposal? an 'C'pacoit quel
) est
of le
En vertu de nouvelle C°"e°:;';g cout
propositions, quel est le under ggevu
cout prévu de perception the berception
de les droits? new de
proposal le
\drmts

Combinatorial structure

%

Structured Models

prediction(x,w) = arg max score(y, w)
yeYV(x)

U

space of feasible outputs

Assumption:

score(y,w) =w ' f(y) = ZWTf(Yp)
p

Score is a sum of local “part” scores

Parts = nodes, edges, productions

%

CFG Parsing

P(y | x)

S

/\
NP VP
/\ /\
DT NN VBD NP
The screen was NP PP
PN N
DT NN IN NP
| | | |
a sea of NN
I
red

f-xxy—Rd

s (PP — IN NP)

I] ¢(A—a)

A—ac(x,y)

#(NP — DT NN)

#(NN — ‘sea’)

[I exp{w'f(4— o)} =exp{w f(x,y)}

A—oe(x,)y)

%

Bilingual word alighnment

N owlf(x) =w' f(x,y)

Yik€y
En
vertu
de
What les
is nouvelle f(x.
the propositions (gk)
anticipated ,
cost quel " association
of est
collecting le .y
end e = position
d 7
e previ = orthography

new

proposal
?

perception
de
le

droits
?

[e.q.
Charniak and

Option 0: Reranking somson o3

Input N-Best List Output
(e.g. n=100)

NP vp

T —
DT NN VBD NP
| | | —
The screen was NP pp
N ~
DT NN IN NP

I I I
sea of NN

red
S
— — T
NP vp
o NP VP
DT NN VBD NP S — T
The somen was NP DP DT NN VBD \p

X= Baseline 7 i e Non-Structured o

The screen was

“ ” a sea ;/ NN g .
The screen was a sea of red. Parser Classification P
(‘z SL(L o‘f N‘l\'
|

NP VP
o~ _
DT NN VBD NP
|] | —~
The screem was NP PP

NN
DT NN IN NP

I I I
sea of NN

red
NP vp

T — T

DT NN VBD NP

I I I —

The screen was NP PP

NN
DT NN IN NP

[
a sea of NN 99
red

%

Reranking

= Advantages:
= Directly reduce to non-structured case
= No locality restriction on features

S

/\
NP VP

T —
DT NN VBD NP
f (I I I T~) p—
The screen was NP PP
PN PN

DT NN IN NP

| I | \
a sea of NN

\
red

" Disadvantages:
= Stuck with errors of baseline parser
= Baseline system must produce n-best lists
= But, feedback is possible [McCloskey, Charniak, Johnson 2006]

%

Efficient Primal Decoding

= Common case: you have a black box which computes

prediction(x) = arg maxw ' £(y)
yeY(x)

at least approximately, and you want to learn w

= Many learning methods require more (expectations, dual representations,
k-best lists), but the most commonly used options do not

= Easiest option is the structured perceptron [Collins 01]

= Structure enters here in that the search for the best y is typically a
combinatorial algorithm (dynamic programming, matchings, ILPs, A*...)

= Prediction is structured, learning update is not

101

Structured Margin

%

= Remember the margin objective:

1
min =||w|[?
w2

Vi,y w'fi(y?) >w' f;(y) + 4(y)

= This is still defined, but lots of constraints

Full Margin: OCR

%

= \We want:

argmaxy w' f(HZ8,y) = “brace”

= Equivalently:
w | f(H&ZHE , “brace”) > w ' f(HZME, “aaaaa”)

w | f (I , “brace”) > w ! f((I&IEA ,“aaaab”)
>a lot!

w | {(H&EE , “brace”) > w ! f(IZME, “zzzz7"

%

= \We want:

Parsing example

arg maxy WTf(‘Itwas red’ ,y) — A§g

cCD

= Equivalently:
WTf(‘Itwas red; Aiab) > WTf(‘Itwas red’, AiﬁF))

Te(;R Ten R
w ' f(Itwasred; 5) > w'f(itwasred, 4F) . a lot!

WTf(‘It was red| Ai%) > WTf(‘It was red’, GEiF)

J

%

Alignment example

= We want:
arg maxy w ! f(Whatisthe' vy — 0P
y ‘Quel est le’ ’ 3:3
= Equivalently:
Tf(‘What is the’ 1"’;) > Tf(‘What is the’ ;“;) \
W ‘Quel est Ie”§:3 W '‘Quel estle’ ’ 3693
T £/ 'What is the’ 1%°1 T ¢ 'What is the’ 1821
W f(‘Quelelstle”g:;) > W f(‘Quelestle’7 2x2)

303 >a lot!

T £ ('What is the’ 1%®1 T ¢ (Whatisthe’ 132
A" \%Y% 2002
f(‘Quel est le’’ g:%) > f(‘Quel estle’’ 3 3) J

%

Cutting Plane

= A constraint induction method [Joachims et al 09]

= Exploits that the number of constraints you actually need per instance
is typically very small

= Requires (loss-augmented) primal-decode only

= Repeat:
= Find the most violated constraint for an instance:

vy wl fi(yH) >w! f;(y) + 4i(y)
arg maxw ' £;(y) + £;(y)
y

= Add this constraint and resolve the (non-structured) QP (e.g. with
SMO or other QP solver)

%

Cutting Plane

= Some issues:
= Can easily spend too much time solving QPs
= Doesn’t exploit shared constraint structure

" |n practice, works pretty well; fast like MIRA, more stable,
no averaging

Summarization Phrase Extraction Parsing
0.09 08
» T
= 008 :
3
o~
g0 = Adaptive CP
5 -
M 0.06 > 3

=== MIRA

5 10 1
Iteration Iteration Iteration

Ef; M3Ns

= Another option: express all constraints in a packed form
= Maximum margin Markov networks [Taskar et al 03]
" |ntegrates solution structure deeply into the problem structure

= Steps
= Express inference over constraints as an LP
= Use duality to transform minimax formulation into min-min

= Constraints factor in the dual along the same structure as the primal;
alphas essentially act as a dual “distribution”

= Various optimization possibilities in the dual

%

Likelihood, Structured

L(w) = —k|[w|[*+)_ (WTfi(nyk) —log " eXD(WTfi(Y))>
7 y

W) — okw+ Y (fz(y:) -y P(yxaf?;(y))
() y

= Structure needed to compute:
= Log-normalizer

= Expected feature counts

= E.g.if afeatureis anindicator of DT-NN then we need to compute posterior
marginals P(DT-NN | sentence) for each position and sum

= Also works with latent variables (more later)

