Algorithms for NLP

Classification Il

Taylor Berg-Kirkpatrick — CMU
Slides: Dan Klein — UC Berkeley

%

The Perceptron, Again

= Start with zero weights
= Visit training instances one by one
= Try to classify

y = arg mawafi(y)
yeY(x)

= |f correct, no change!
= |f wrong: adjust weights

w — w + £;(y})
w—w —£;(¥)
o

w—w+ (f;(y;) — £;(¥))

S
w— w4+ A ()

mistake vectors

%

= \What is the final value of w? w— W+ A;(y)

= Canit be an arbitrary real vector?

Perceptron Weights

= No! It’s built by adding up feature vectors (mistake vectors).
—_ /
w=A;y)+A2,)+ -

W = Z o;(y)Ai(y) mistake counts
LY

= Can reconstruct weight vectors (the primal representation) from
update counts (the dual representation) for each i

a; = (a;j(y1) oi(y2) .. ai(yn))

%

» Track mistake counts rather than weights w — Z ai(}’)Ai(Y)
1,y

Dual Perceptron

= Start with zero counts (o)

~ _ T
= For each instance x y = arg maxw f(Y)
= Try to classify yEy(X)

y =argmax > ay(y) A,) fi(y)
yEy(XZ-) ’i/,y/

= |f correct, no change!
= |f wrong: raise the mistake count for this example and prediction

a;(¥) — o;(¥) +1 w— w1+ Ay(Y)

E& Dual / Kernelized Perceptron

= How to classify an example x?
-
score(y) = w ' fi(y) = (Z O‘i’(y/>Ai’(y/)) £;(y)
i/,y/
= > ay(y") (/&) ()
7:/7y/
= > ay(y") (v " i(y) = £, (YD) ()

i’,y’

— / * /

= > ay(y") (K(yjny) = K&\ y))
z",y’

= |f someone tells us the value of K for each pair of candidates,
never need to build the weight vectors

E& Issues with Dual Perceptron

= Problem: to score each candidate, we may have to compare
to all training candidates

score(y) = Y ay(y) (K(yiny) — Ky, y))
iy’
= Very, very slow compared to primal dot product!

= One bright spot: for perceptron, only need to consider candidates we
made mistakes on during training

= Slightly better for SVMs where the alphas are (in theory) sparse

= This problem is serious: fully dual methods (including kernel
methods) tend to be extraordinarily slow

= Of course, we can (so far) also accumulate our weights as we
go...

Kernels: Who Cares?

%

= So far: a very strange way of doing a very simple
calculation

= “Kernel trick”: we can substitute any™* similarity
function in place of the dot product

" Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break.

E.g. convergence, mistake bounds. In practice,
illegal kernels sometimes work (but not always).

%

= Kernels implicitly map original vectors to higher dimensional
spaces, take the dot product there, and hand the result back

Some Kernels

= Linear kernel:
K(z,2) =2 2’ = szx;

= Quadratic kernel: , , ¢ 5
Klx,2)=(zx-2'+ 1)

- /
— inacjxi:cj +2) zaxi+1
1,7 1

= RBF: infinite dimensional representation
K(z,2") = exp(—|lz — 2'||)

= Discrete kernels: e.g. string kernels, tree kernels

Tree Kernels (Colins and

a) S b) NP NP D N NP NP

NP/\VP]|) I\lI D N the apple [l) N D IT]
lll V/\NP the apple the apple
| | N

Jeff ate D N

the apple

= Want to compute number of common subtrees between T, T’

= Add up counts of all pairs of nodes n, n’
= Base: if n, n’ have different root productions, or are depth O:

C(ny,ne) =0

= Base:if n, n’ are share the same root production:

nc(ny)

C(ni,n2) = A H 1+ C(ch(ni,j),ch(na, j)))

E& Kernelized SVM (trust me)

Primal formulation:

. 1 >
- C :
min SIwIl= + Eiﬁéz
Vi,y w fi(y}) >w! f;(y) + 4(y) —

W = Z%(Y) (f:(yi) —£i(y))
i,y

Dual formulation:
2

min - > sl) ()~) | =D eawti(v

Vi Zai(y) =C

E{i Dual Formulation for SVMs

We want to optimize: (separable case for now)

1
2
Vi,y w'fi(y?) >w' f;(y) + 4(y)

min [|w]|2
W

This is hard because of the constraints
Solution: method of Lagrange multipliers
The Lagrangian representation of this problem is:

. 1 *
min rgjzag; ANw,a) = EHWHQ — %ai(Y) <WTf’i(yi) —w ' fi(y) - 57;(}’)>

All we’ve done is express the constraints as an adversary which leaves our
objective alone if we obey the constraints but ruins our objective if we
violate any of them

Lagrange Duality

%

= We start out with a constrained optimization problem:
flw?) = min f(w)
g(w) >0

= We form the Lagrangian:
ANw,a) = f(w) —ag(w)

= This is useful because the constrained solution is a saddle
point of A (this is a general property):

* _ . _ .
f(w®) = min ranzaéd\(w,a) = r(;wza(%(min AN(w,)
— —~ /) — ~ _/

Primal problem in w Dual problem in o

Dual Formulation Il

%

= Duality tells us that

. 1 "
min max ~[|w[|® = > a;(y) (w £(y)) - w fi(y) — ti(y))
a>0 2 iy

has the same value as Z(Oz)
A
— { N
max min - S[Iw]|* = Y ai(y) (W () — w () - 4())
1,y

a>0 W 5

= This is useful because if we think of the o’s as constants, we have an
unconstrained min in w that we can solve analytically.

= Then we end up with an optimization over a instead of w (easier).

%

Dual Formulation Il

= Minimize the Lagrangian for fixed o/'s:

Aw,a) = 2IWl? = Y ai(y) (wThiyD) = w () — 4(y))
iy

ON(w,)

- = w— a(y) () —fi(y))
W i,y

8/\(W7a) W — O (vE) — f.
o =0 §> z; {(y) (D) — fi(y))

= So we have the Lagrangian as a function of only a’s:

min Z(a) =

a>0

2

— Z a; ()4 (y)
i,y

> i) (D) ~)
Ly

%

Primal vs Dual SVM

Primal formulation:

R B
- C :
mwa 2IIWII + %:fz
Vi,y w fi(y}) >w! f;(y) + 4(y) —

W = Z%(Y) (f:(yi) —£i(y))
i,y

Dual formulation:
2

min - > sl) ()~) | =D eawti(v

Vi Zai(y) =C

%

Learning SVMs (Primal)

Primal formulation:

| 1, .5
_ C .
va? 2||w|| + 2@:&

Vi,y w £y >w fi(y) + 4(y) — &

4

n}ui)n %HwH% + C’Z (m;lx (wai(y) +4i(y)) — "UTf?;(y;k)>

%

Learning SVMs (Primal)

Primal formulation:

.1 .
min §HwH§ + C’Z (m;lX (w' fily) +Li(y)) —w' fily;))
Loss-augmented decode: 7 = argmax, (w' f;(y) + £;(y))

mln —HwHQ—I-CZ (@) + Li(y)_waz(y;'k))

—w+02 i) = fi(yp))

Use general subgradient descent methods! (Adagrad)

%

Learning SVMs (Dual)

= \We want to find o which minimize
gl;g > Zaz (fily)) ZO%
Vi Zozi(y):C'
Yy

= This is a quadratic program:
= Can be solved with general QP or convex optimizers
= But they don’t scale well to large problems

= Cf. maxent models work fine with general optimizers (e.g.
CG, L-BFGS)

" How would a special purpose optimizer work?

E& Coordinate Descent | (Dual)

mm —
a>0

Zaz (fiy}) Zaz

= Despite all the mess, Zis just a quadratic in each o(y)
= Coordinate descent: optimize one variable at a time

\/zm(y)) Z(ai(y))

0 0

= |f the unconstrained argmin on a coordinate is negative, just
clip to zero...

E& Coordinate Descent |l (Dual)

Ordinarily, treating coordinates independently is a bad idea, but here the
update is very fast and simple

Ei —WT fz ;k _fi
oy — max (o,%(y) L) v (56D <y>))

2
(B — ()|
So we visit each axis many times, but each visit is quick

This approach works fine for the separable case

For the non-separable case, we just gain a simplex constraint and so we
need slightly more complex methods (SMO, exponentiated gradient)

y

What are the Alphas?

%

= Each candidate corresponds to a primal + 4
constraint +
- L, 2 - +
min —||lw C :
min Sl O3

Vi,y w (y5) > w fi(y) + £(y) — &

= In the solution, an a(y) will be: Support vectors

m Zero if that constraint is inactive
= Positive if that constrain is active
= j.e. positive on the support vectors

= Support vectors contribute to weights:

w =) a;(y) £y —)

1,y

Structure

%

Handwriting recognition

X y

| Sid4 =~ brace

Sequential structure

[Slides: Taskar and Klein 05]

p 3 CFG Parsing
X y
S
/\
NP VP
The screen was =) D]ZANN V?B/EP\
The screen was NP PP
a sea of red DA

DT NN IN NP

| | | |
a sea of NN

red

Recursive structure

%

Bilingual Word Alignment

X vertu
de
What les
- - . nouvelle
What is the anticipated is propositions
cost of collecting fees ’ :h:)
under the new proposal? an 'C'pacoit quel
) est
of le
En vertu de nouvelle C°"e°:;';g cout
propositions, quel est le under ggevu
cout prévu de perception the berception
de les droits? new de
proposal le
\drmts

Combinatorial structure

%

Structured Models

prediction(x,w) = arg max score(y, w)
yeYV(x)

U

space of feasible outputs

Assumption:

score(y,w) =w ' f(y) = ZWTf(Yp)
p

Score is a sum of local “part” scores

Parts = nodes, edges, productions

%

Bilingual word alighnment

N owlf(x) =w' f(x,y)

Yik€y
En
vertu
de
What les
is nouvelle f(x.
the propositions (gk)
anticipated ,
cost quel " association
of est
collecting le .y
end e = position
d 7
e previ = orthography

new

proposal
?

perception
de
le

droits
?

%

Efficient Decoding

= Common case: you have a black box which computes

prediction(x) = arg maxw ' £(y)
yeY(x)

at least approximately, and you want to learn w

= Easiest option is the structured perceptron [Collins 01]

= Structure enters here in that the search for the best vy is typically a
combinatorial algorithm (dynamic programming, matchings, ILPs, A*...)

= Prediction is structured, learning update is not

E& Structured Margin (Primal)

Remember our primal margin objective?

min Lwl3+CY (mgx (™ fi(y) + (y)) — Mﬁ-@f))

Still applies with structured output space!

E& Structured Margin (Primal)

Just need efficient loss-augmented decode:

y = argmax, (w' f;(y) + 4;(y))

mm —HwH2—|-CZ (y) + 4:(y) — waz(y;'k))

—w+cZ i) = fi(yp))

Still use general subgradient descent methods! (Adagrad)

Structured Margin (Dual)

%

= Remember the constrained version of primal:
min l||w||2 +C> &
w, & 2 - ’
Vi,y w'fi(y)) >w!fi(y) +4G) - &

* Dual has a variable for every constraint here

Full Margin: OCR

%

= \We want:

argmaxy w' f(HZ8,y) = “brace”

= Equivalently:
w | f(H&ZHE , “brace”) > w ' f(HZME, “aaaaa”)

w | f (I , “brace”) > w ! f((I&IEA ,“aaaab”)
>a lot!

w | {(H&EE , “brace”) > w ! f(IZME, “zzzz7"

%

= \We want:

Parsing example

arg maxy WTf(‘Itwas red’ ,y) — A§g

cCD

= Equivalently:
WTf(‘Itwas red; Aiab) > WTf(‘Itwas red’, AiﬁF))

Te(;R Ten R
w ' f(Itwasred; 5) > w'f(itwasred, 4F) . a lot!

WTf(‘It was red| Ai%) > WTf(‘It was red’, GEiF)

J

%

Alignment example

= We want:
arg maxy w ! f(Whatisthe' vy — 0P
y ‘Quel est le’ ’ 3:3
= Equivalently:
Tf(‘What is the’ 1"’;) > Tf(‘What is the’ ;“;) \
W ‘Quel est Ie”§:3 W '‘Quel estle’ ’ 3693
T £/ 'What is the’ 1%°1 T ¢ 'What is the’ 1821
W f(‘Quelelstle”g:;) > W f(‘Quelestle’7 2x2)

303 >a lot!

T £ ('What is the’ 1%®1 T ¢ (Whatisthe’ 132
A" \%Y% 2002
f(‘Quel est le’’ g:%) > f(‘Quel estle’’ 3 3) J

%

Cutting Plane (Dual)

= A constraint induction method [Joachims et al 09]

= Exploits that the number of constraints you actually need per instance
is typically very small

= Requires (loss-augmented) primal-decode only

= Repeat:
= Find the most violated constraint for an instance:

vy wl fi(yH) >w! f;(y) + 4i(y)
arg maxw ' £;(y) + £;(y)
y

= Add this constraint and resolve the (non-structured) QP (e.g. with
SMO or other QP solver)

Comparison

Oct 20

Structured Classification 1lI

Oct 25

Structured Classification IV

_— 90

|

0 | |

J+M 16, 18, 19, Adagrad, Subgradient SVM

3 6
Constituency Parsing

9

12 15 18 0 3 6

=== Cutting Plane
----- Online Cutting Plane

Margin Online Primal Subgradient & L,
= Online Primal Subgradient & Lo
) Averaged Perceptron
M1§take MIRA
Driven Averaged MIRA (MST built-in)

Llhood Stochastic Gradient Descent

Constituency Parsing, Neural CRF

[e.q.
Charniak and

Option 0: Reranking somson o3

Input N-Best List Output
(e.g. n=100)

NP vp

T —
DT NN VBD NP
| | | —
The screen was NP pp
N ~
DT NN IN NP

I I I
sea of NN

red
S
— — T
NP vp
o NP VP
DT NN VBD NP S — T
The somen was NP DP DT NN VBD \p

X= Baseline 7 i e Non-Structured o

The screen was

“ ” a sea ;/ NN g .
The screen was a sea of red. Parser Classification P
(‘z SL(L o‘f N‘l\'
|

NP VP
o~ _
DT NN VBD NP
|] | —~
The screem was NP PP

NN
DT NN IN NP

I I I
sea of NN

red
NP vp

T — T

DT NN VBD NP

I I I —

The screen was NP PP

P P
DT NN IN NP
I I

sea of NN

red

%

Reranking

= Advantages:
= Directly reduce to non-structured case
= No locality restriction on features

S

/\
NP VP

T —
DT NN VBD NP
f (I I I T~) p—
The screen was NP PP
PN PN

DT NN IN NP

| I | \
a sea of NN

\
red

" Disadvantages:
= Stuck with errors of baseline parser
= Baseline system must produce n-best lists
= But, feedback is possible [McCloskey, Charniak, Johnson 2006]

