Feature Structures and
Unification Grammars

11-711 Algorithms for NLP
15 November 2016 — Part Il

Linguistic features

* (Linguistic “features” vs. ML “features”.)

* Human languages usually include agreement
constraints; in English, e.g., subject/verb
— | often swim
— He often swims
— They often swim

* Could have a separate category for each minor
type: N1s, N1p, ..., N3s, N3p, ...

— Each with its own set of grammar rules!

A day without features...

NP1ls - Det-s N1s
NP1p - Det-p N1p

NP3s - Det-s N3s
NP3p - Det-p N3p

S1s - NP1s VP1s
S1p -2 NP1p VP1p
S3s - NP3s VP3s
S3p - NP3p VP3p

Linguistic features

* Could have a separate category for each minor
type: N1s, N1p, ..., N3s, N3p, ...

— Each with its own set of grammar rules!

* Much better: represent these regularities
using independent features: number, gender,
person, ...

e Features are typically introduced by lexicon;
checked and propagated by constraint
equations attached to grammar rules

Feature Structures (FSs)

Having multiple orthogonal features with values
leads naturally to Feature Structures:

[Det
[root: a]
[number: sg]]

A feature structure’s values can in turn be FSs:
INP

[agreement: [[number: sg]
[person: 3rd]]]]

Feature Path: <NP agreement person>

Adding constraints to CFG rules

* S>NPVP

<NP number> = <VP number>

e NP - Det Nominal

<NP head> = <Nominal head>

<Det head agree> = <Nominal head agree>

FSs from lexicon, constrs. from rules

Lexicon entry: Rule with constraints:
[Det NP - Det Nominal
[root: a] <NP number> = <Det number>
[number: sg]] <NP number> = <Nominal

number>

e Combine to get result:
[NP [Det
[root: a]
[number: sg]]
[Nominal [number: sg] ...]

[number: sg]]

Similar issue with VP types

Another place where grammar rules could

explode:
Jack laughed

VP = Verb for many specific verbs

Jack found a key

VP - Ver
Jack gave Sue t
VP - Ver

0 NP for many specific verbs
he paper

0 NP NP for many specific verbs

Verb Subcategorization

Verbs have sets of allowed args. Could have many sets of VP rules.
Instead, have a SUBCAT feature, marking sets of allowed arguments:

+none -- Jack laughed

+np -- Jack found a key

+np+np -- Jack gave Sue the paper
+vp:inf -- Jack wants to fly
+np+vp:inf -- Jack told the man to go

+vp:ing -- Jack keeps hoping for the
best

+np+vp:ing -- Jack caught Sam
looking at his desk

+np+vp:base -- Jack watched Sam
look at his desk

+np+pp:to -- Jack gave the key to the
man

+pp:loc -- Jack is at the store

+np+pp:loc -- Jack put the box in the
corner

+pp:mot -- Jack went to the store

+np+pp:mot -- Jack took the hat to
the party

+adjp -- Jack is happy
+np+adjp -- Jack kept the dinner hot

+sthat -- Jack believed that the world
was flat

+sfor -- Jack hoped for the man to
win a prize

50-100 possible frames for English; a single verb can have several.
(Notation from James Allen “Natural Language Understanding”)

Frames for “ask”

(in J+M notation)

Subcat Example

Qo asked [py, “What was it like?”]

NP asking [yp a question]

Swh asked [,,;, what trades you're interested in]
Sto ask [ss, him to tell you]

PE that means asking [pp at home]

Vio asked [yy, to see a girl called Evelyn]

NP Sif asked [yp him] [g;r whether he could make]
NP NP asked [yp myself] [yp a question]

NP Swh asked [yp him] [g,,;, why he took time off]

Adding transitivity constraint

* S>NPVP

<NP number> = <VP number>

e NP - Det Nominal

<NP head> = <Nominal head>

<Det head agree> = <Nominal head agree>

e VP - Verb NP

<VP head> = <Verb head>
<VP head subcat>=+np (which means transitive)

Applying a verb subcat feature

Lexicon entry: Rule with constraints:
[Verb VP = Verb NP
root: found] <VP head> = <Verb head>
lhead: find] <VP head subcat> = +np
[subcat: +np]]

e Combine to get result:
[VP [Verb

root: found]

'head: find]

'subcat: +np]]

[NP ...]

[head: [find [subcat: +np]]]]

Relation to LFG constraint notation

* VP = Verb NP
<VP head> = <Verb head>
<VP head subcat> = +np

from JM book is the same as the LFG expression

* VP - Verb NP
(T head) = ({, head)
(T head subcat) = +np

Unification

 Merging FSs (and failing if not possible) is
called Unification

* Simple FS examples:

number sg
number sg]

number sg

number sg]

number sg] = [number sg]
‘number pl] FAILS

number []] = [number sg]

person 3rd] = [number sg,
person 3rd]

Recap: applying constraints

Lexicon entry: Rule with constraints:
[Det NP - Det Nominal
[root: a] <NP number> = <Det number>
[number: sg]] <NP number> = <Nominal
number>

e Combine to get result:
[NP [Det
[root: a]
[number: sg]]
[Nominal [number: sg] ...]

[number: sg]]

Turning constraint egns. into FS

Lexicon entry:
[Det
[root: a]
[number: sg]]

e Combine to get result:
[NP [Det
[root: a]
[number: sg]]
[Nominal [number: sg]

]

[number: sg]]

Rule with constraints:
NP - Det Nominal

<NP number> = <Det number>
<NP number> = <Nominal

number>
becomes:
[INP [Det [number: (1)]]
[Nominal

[number: (1)]

o]
[number: (1)]]

Another example

This (oversimplified) rule:
S—=> NPVP
<S subject>= NP
<S agreement> = <S subject agreement>
turns into this DAG:
[S [subject (1)
[agreement (2)]]
agreement (2)]
NP (1)]
VP]

Unification example without “EQ“

[agreement [number sg],
subject [agreement [number sg]]]

LI[subject [agreement [person 3rd,
number sg]]]
= [agreement [number sg],
subject [agreement [person 3rd,
number sg]]]

e <agreement number> is equal to <subject
agreement number>, but not EQ

Unification example with “EQ”

[agreement (1), subject [agreement (1)]]

LI[subject [agreement [person 3rd, number sg]
= [agreement (1),
subject [agreement (1) [person 3rd,
number sg]]]

e <agreement number> is <subject agreement
number> (EQ), so they are equal

Representing FSs as DAGs

* Taking feature paths seriously

* May be easier to think about than numbered
cross-references in text

e [cat NP, agreement [number sg, person 3rd]]

® 7
CAT NP

NUMBE ®

AGREEMENT

PERSON ®

Re-entrant FS as DAGs

e [cat S, head [agreement (1) [number sg,
person 3rd],

subject [agreement (1)]]]

CAT ® S

HEAD AGREEMENT

NUMBE ® g
SUBJECT .\/
AGREEMENT

PERSO ® 34

Seems tricky. Why bother?

e Unification allows the systems that use it to
handle many complex phenomena in “simple
elegant ways:

— There seems to be a dog in the yard.
— There seem to be dogs in the yard

* Unification makes this work smoothly.

— Make the Subjects of the clauses EQ:
<VP subj>=<VP COMP subj>
[VP [subj: (1)] [COMP [subj: (1)]]]

— (Ask Lori Levin for LFG details.)

’)

Real Unification-Based Parsing

e X0 - X1 X2
<XO0 cat> =S, <X1 cat>= NP, <X2 cat>=VP
<X1 head agree> = <X2 head agree>
<X0 head> = <X2 head>

e XO = X1 and X2

<X1 cat> = <X2 cat>, <X0 cat> = <X1 cat>

e X0 - X1 X2
<X1 orth> = how, <X2 sem> = <SCALAR>

Complexity

e Earley modification: “search the chart for
states whose DAGs unify with the DAG of the
completed state”. Plus a lot of copying.

* Unification parsing is “quite expensive”.
— NP-Complete in some versions.
— Early AWB paper on Turing Equivalence(!)
* So maybe too powerful?

(like GoTo or Call-by-Name?)

— Add restrictions to make it tractable:
* Tomita’s Pseudo-unification (Tomabechi too)
 Gerald Penn work on tractable HPSG: ALE

Formalities: subsumption

* Less specific FS1 subsumes more specific FS2
FS1E FS2 (Inverse is FS2 extends FS1)

* Subsumption relation forms a semilattice,
at the top: []

T~

[number sg] [person 3] [number pl]

~N

[number sg, person 3]

 Unification defined wrt semilattice:
FUG=Hst.FEHandGEH
H is the Most General Unifier (MGU)

Hierarchical Types

Hierarchical types allow values to unify too (or not):

A

1st 3rd sg pl

e

1st-sg 3rd-sg 1st-pl 3rd-pl

3sg-masc 3sg-fem 3sg-neut

Hierarchical subcat frames

Many verbs share subcat frames, some with
more arguments specified than others:

comp-cat

el A

trans-comp-cat sfin-comp-cat swh-comp-cat sbase-comp-cat sinf-comp-cat intrans-comp-cat

tr-sfin-comp-cat tr-sbase-comp-cat intr-swh-comp-c intr-sinf-comp-cat

tr-swh-comp-cat intr-sfin-comp-cat intr-sbase-comp-cat

Questions?

Subcategorization

Noun Phrase Types

There nonreferential there There is still much to learn
It nonreferential it It was evident that my ideas
NP noun phrase As he was relating his story

Preposition Phrase Types

PP preposition phrase couch their message in terms

PPing gerundive PP censured him for not having intervened
PPpart particle turn it off

Verb Phrase Types

VPbrst bare stem VP she could discuss it

VPto to-marked infin. VP Why do you want to know?

VPwh wh-VP it is worth considering how to write
VPing gerundive VP I would consider using it

Complement Clause types

Sfin finite clause maintain that the situation was unsatisfactory
Swh wh-clause it tells us where we are

Sif whether/if clause ask whether Aristophanes is depicting a

Sing gerundive clause see some attention being given

Sto to-marked clause know themselves to be relatively unhealthy
Sforto for-to clause She was waiting for him to make some reply
Sbrst bare stem clause comimanded that his sermons be published
Other Types

AjP adjective phrase thought it possible

Quo quotes asked **What was it like?”’

* (Add an example full parse “he runs”)

— After “another example” slide?
* Get from F15(?) Recitation notes??

