
Feature	Structures	and
Unification	Grammars

11-711	Algorithms	for	NLP
15	November	2016	– Part	II



Linguistic	features

• (Linguistic	“features”	vs.	ML	“features”.)
• Human	languages	usually	include	agreement
constraints;	in	English,	e.g.,	subject/verb
– I	often	swim
– He often	swims
– They	often	swim

• Could have	a	separate	category	for	each	minor	
type:	N1s,	N1p,	…,	N3s,	N3p,	…
– Each with	its	own	set	of	grammar	rules!



A	day	without	features…

• NP1s	→	Det-s	N1s
• NP1p	→	Det-p	N1p

…

• NP3s	→	Det-s	N3s
• NP3p	→	Det-p	N3p

…

• S1s	→	NP1s	VP1s
• S1p	→	NP1p	VP1p
• S3s	→	NP3s	VP3s
• S3p	→	NP3p	VP3p



Linguistic	features

• Could have	a	separate	category	for	each	minor	
type:	N1s,	N1p,	…	, N3s,	N3p,	…
– Each with	its	own	set	of	grammar	rules!

• Much	better:	represent	these	regularities	
using	independent	features: number,	gender,	
person,	…

• Features	are	typically	introduced	by	lexicon;
checked	and	propagated	by	constraint	
equations	attached	to	grammar	rules



Feature	Structures	(FSs)
Having	multiple	orthogonal	features	with	values	
leads	naturally	to	Feature	Structures:

[Det
[root:	a]
[number:	sg ]]

A	feature	structure’s	values	can	in	turn	be	FSs:
[NP
[agreement:	[[number:	sg]

[person:	3rd]]]]
Feature	Path:	<NP	agreement	person>	



Adding	constraints	to	CFG	rules

• S	→	NP	VP
<NP	number>	=	<VP	number>

• NP	→	Det Nominal
<NP	head>	=	<Nominal	head>
<Det head	agree>	=	<Nominal	head	agree>



FSs	from	lexicon,	constrs.	from	rules
Lexicon	entry:

[Det
[root:	a]
[number:	sg ]]

• Combine	to	get	result:
[NP	[Det

[root:	a]
[number:	sg ]]

[Nominal		[number:	sg]	…]

[number:	sg]]

Rule	with	constraints:
NP	→	Det Nominal	

<NP	number>	=	<Det number>
<NP	number>	=	<Nominal	

number>



Similar	issue	with	VP	types

Another	place	where	grammar	rules	could	
explode:

Jack	laughed
VP	→	Verb			for	many	specific	verbs

Jack	found	a	key
VP	→	Verb	NP			for	many	specific	verbs

Jack	gave	Sue	the	paper
VP	→	Verb	NP	NP			for	many	specific	verbs



Verb	Subcategorization

+none	-- Jack	laughed
+np -- Jack	found	a	key
+np+np -- Jack	gave	Sue	the	paper
+vp:inf -- Jack	wants	to	fly
+np+vp:inf -- Jack	told	the	man	to	go
+vp:ing -- Jack	keeps	hoping	for	the	
best
+np+vp:ing -- Jack	caught	Sam	
looking	at	his	desk
+np+vp:base -- Jack	watched	Sam	
look	at	his	desk
+np+pp:to -- Jack	gave	the	key	to	the	
man

+pp:loc -- Jack	is	at	the	store
+np+pp:loc -- Jack	put	the	box	in	the	
corner
+pp:mot -- Jack	went	to	the	store
+np+pp:mot -- Jack	took	the	hat	to	
the	party
+adjp -- Jack	is	happy
+np+adjp -- Jack	kept	the	dinner	hot
+sthat -- Jack	believed	that	the	world	
was	flat
+sfor -- Jack	hoped	for	the	man	to	
win	a	prize

Verbs	have	sets	of	allowed	args.		Could	have	many	sets	of	VP	rules.
Instead,	have	a	SUBCAT	feature,	marking	sets	of	allowed	arguments:

50-100	possible	frames for	English;	a	single	verb	can	have	several.
(Notation	from	James	Allen	“Natural	Language	Understanding”)



Frames	for	“ask”
(in	J+M	notation)



Adding	transitivity	constraint

• S	→	NP	VP
<NP	number>	=	<VP	number>

• NP	→	Det Nominal
<NP	head>	=	<Nominal	head>
<Det head	agree>	=	<Nominal	head	agree>

• VP	→	Verb NP
<VP	head>	=	<Verb	head>
<VP	head	subcat>	=	+np							 (which	means	transitive)



Applying	a	verb	subcat feature
Lexicon	entry:

[Verb
[root:	found]
[head:	find]
[subcat:	+np	]]

• Combine	to	get	result:
[VP	[Verb

[root:	found]
[head:	find]
[subcat:	+np	]]

[NP	…]

[head:	[find		[subcat:	+np]]]]

Rule	with	constraints:
VP	→	Verb	 NP

<VP	head>	=	<Verb	head>
<VP	head	subcat>	=	+np



Relation	to	LFG	constraint	notation

• VP	→	Verb	 NP
<VP	head>	=	<Verb	head>
<VP	head	subcat>	=	+np

from	JM	book	is	the	same	as	the	LFG	expression

• VP	→	Verb	 NP
(↑	head)	=	(↓	head)
(↑	head	subcat)	=	+np



Unification

• Merging	FSs	(and	failing	if	not	possible)	is	
called	Unification

• Simple	FS	examples:
[number	sg]⊔[number	sg]	= [number	sg]
[number	sg]⊔[number	pl]		FAILS
[number	sg]⊔[number	[]]	= [number	sg]
[number	sg]⊔[person	3rd]	= [number	sg,	

person	3rd]



Recap:	applying	constraints
Lexicon	entry:

[Det
[root:	a]
[number:	sg ]]

• Combine	to	get	result:
[NP	[Det

[root:	a]
[number:	sg ]]

[Nominal		[number:	sg]	…]

[number:	sg]]

Rule	with	constraints:
NP	→	Det Nominal	

<NP	number>	=	<Det number>
<NP	number>	=	<Nominal	

number>



Turning	constraint	eqns.	into	FS
Lexicon	entry:

[Det
[root:	a]
[number:	sg ]]

• Combine	to	get	result:
[NP	[Det

[root:	a]
[number:	sg ]]

[Nominal		[number:	sg]
…]

[number:	sg]]

Rule	with	constraints:
NP	→	Det Nominal	

<NP	number>	=	<Det number>
<NP	number>	=	<Nominal	

number>
becomes:

[NP	[Det [number:	(1) ]]
[Nominal

[number:	(1) ]
…]

[number:	(1) ]]



Another	example

This	(oversimplified)	rule:
S	→	NP	VP

<S	subject>	=	NP
<S	agreement>	=	<S	subject	agreement>

turns	into	this	DAG:
[S		[subject	(1)	

[agreement	(2)	]]
[agreement	(2)	]
[NP	(1)	]
[VP	]



Unification	example	without	“EQ“
[agreement	[number	sg],	
subject	[agreement	[number	sg]]]
⊔[subject	[agreement	[person	3rd,	

number	sg]]]	
= [agreement	[number	sg],	

subject	[agreement	[person	3rd,	
number	sg]]]

• <agreement	number>	is	equal	to	<subject	
agreement	number>,	but	not EQ



Unification	example	with	“EQ“

[agreement	(1),	subject	[agreement	(1)]]
⊔[subject	[agreement	[person	3rd,	number	sg]	
= [agreement	(1),	

subject	[agreement	(1)	[person	3rd,	
number	sg]]]

• <agreement	number>	is <subject	agreement	
number>	(EQ),	so	they	are	equal



Representing	FSs	as	DAGs

• Taking	feature	paths	seriously
• May	be	easier	to	think	about	than	numbered	
cross-references	in	text

• [cat	NP,	agreement	[number	sg,	person	3rd]]



Re-entrant	FS	as	DAGs
• [cat	S,	head	[agreement	(1)	[number	sg,	

person	3rd],	
subject	[agreement	(1)]]]	

HEAD



Seems	tricky.		Why	bother?

• Unification	allows	the	systems	that	use	it	to	
handle	many	complex	phenomena	in	“simple”	
elegant	ways:
– There	seems to	be	a	dog in	the	yard.
– There	seem to	be	dogs in	the	yard

• Unification	makes	this	work	smoothly.
–Make	the	Subjects	of	the	clauses	EQ:

<VP	subj>	=	<VP	COMP	subj>
[VP				[subj:	(1)]				[COMP	[subj:	(1)]]]

– (Ask	Lori	Levin	for	LFG	details.)



Real Unification-Based	Parsing

• X0	→	X1	X2
<X0	cat>	=	S,	<X1	cat>	=	NP,	<X2	cat>	=	VP
<X1	head	agree>	=	<X2	head	agree>
<X0	head>	=	<X2	head>

• X0	→	X1	and X2
<X1	cat>	=	<X2	cat>,	<X0	cat>	=	<X1	cat>

• X0	→	X1	X2
<X1	orth>	=	how,	<X2	sem>	=	<SCALAR>



Complexity

• Earley modification:	“search	the	chart	for	
states	whose	DAGs	unify with	the	DAG	of	the	
completed	state”.		Plus	a	lot	of	copying.

• Unification	parsing	is	“quite	expensive”.
– NP-Complete	in	some	versions.
– Early	AWB	paper	on	Turing	Equivalence(!)

• So	maybe	too powerful?
(like	GoTo or	Call-by-Name?)

– Add	restrictions	to	make	it	tractable:
• Tomita’s	Pseudo-unification	(Tomabechi too)
• Gerald	Penn	work	on	tractable	HPSG:	ALE



Formalities:	subsumption
• Less	specific	FS1	subsumesmore	specific	FS2

FS1	⊑ FS2						(Inverse	is	FS2	extends FS1)
• Subsumption relation	forms	a	semilattice,

at	the	top:	[]

[number	sg]		[person	3]		[number	pl]	

[number	sg,	person	3]

• Unification	defined	wrt semilattice:	
F	⊔ G	=	H	s.t. F	⊑ H	and	G	⊑ H
H	is	the	Most	General	Unifier	(MGU)



Hierarchical	Types
Hierarchical	types	allow	values to	unify	too	(or	not):



Hierarchical	subcat frames
Many	verbs	share	subcat frames,	some	with	

more	arguments	specified	than	others:



Questions?



Subcategorization



• (Add	an	example	full	parse	“he	runs”)
– After	“another	example”	slide?

• Get	from	F15(?)	Recitation	notes??


