Algorithms for NLP

Acoustic Models

Taylor Berg-Kirkpatrick — CMU
Slides: Dan Klein — UC Berkeley



}fi Complex Waves: 100Hz+1000Hz
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Spectrum

Frequency components (100 and 1000 Hz) on x-axis
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&art of [ae] waveform from “had”
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= Note complex wave repeating nine times in figure

= Plus smaller waves which repeats 4 times for every large
pattern

= Large wave has frequency of 250 Hz (9 times in .036 seconds)
= Small wave roughly 4 times this, or roughly 1000 Hz
= Two little tiny waves on top of peak of 1000 Hz waves



Efﬁ, Spectrum of an Actual Speech
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Spectrograms
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Spectrograms
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Spectrograms
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Types of Graphs
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Spectrum of Actual Speech
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Source / Filter



Why these Peaks?

= Articulation process:

The vocal cord vibrations
create harmonics

The mouth is an amplifier

Depending on shape of
mouth, some harmonics are
amplified more than others

()u(put sound "~ ======== > % C Output spectrum
= 0
S _q
1 \lll "l
””l |||I|||| ||||
= 0 1.000 2.000 000
Frequency (hertz)
B Filter function
o - 2()
Filter ~======ceccec==> < =

(Vocal tract)

y (decibe

Filter rati

-
e
e C
=
2
= o
= !
q S

&5

Source =i mim i i o - A Source spectrum
0

t

ibe

Vibrating vocal folds

7\ =~
/ -2()
Ry =
/ ,-“ .‘» 2 =
/ / N\ =
A N o 3() IIII
/ l"- \ | .
y %) \
). \W () 000
g r<

o, ncy (hertz

nj litude (dec

Sot

Airstream

Lungs



Vowel [i] at increasing pitches

3 F#2 3 A2 3
A3

C4 (middle C)
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Figures from Ratree Wayland



Eﬁ Resonances of the Vocal Tract

The human vocal tract as an open tube:

Closed end

_
l

Open end
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Length 17.5 cm.

Air in a tube of a given length will tend

to vibrate at resonance frequency of
tube.

Constraint: Pressure differential should

: e i M O 8}
be maximal at (closed) glottal end and folds
minimal at (open) lip end.
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Figure from W. Barry



From Sundberg



E& Computing the 3 Formants of Schwa

= Let the length of the tube be L
= F,=c/A, =c/(4L) =35,000/4*17.5 = 500Hz
= F,=c/A,=c/(4/3L) =3c/4L =3*35,000/4*17.5 = 1500Hz
* F,=c/h;=c/(4/5L)=5c/4L =5%35,000/4*17.5 = 2500Hz

= So we expect a neutral vowel to have 3 resonances at 500,
1500, and 2500 Hz

= These vowel resonances are called formants



Cross section of vocal tract Model of vocal tract Acoustic spectrum
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g Seeing Formants: the Spectrogram
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Vowel Space
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g Seeing Formants: the Spectrogram
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Efi American English Vowel Space
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Figures from Jennifer Venditti, H. T. Bunnell



Spectrograms



E& How to Read Spectrograms
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= [bab]: closure of lips lowers all formants: so rapid increase in
all formants at beginning of "bab"

= [dad]: first formant increases, but F2 and F3 slight fall

= [gag]: F2 and F3 come together: this is a characteristic of
velars. Formant transitions take longer in velars than in
alveolars or labials

From Ladefoged “A Course in Phonetics”



Eﬁ”She came back and started again”
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From Ladefoged “A Course in Phonetics”



Dialect Issues

%

= Speech varies from dialect to
dialect (examples are American
vs. British English)

= Syntactic (“l could” vs. “I could —
V24 m
do”)
= |exical (“elevator” vs. “lift”)
= Phonological
= Phonetic

American British

I V

i

T | ‘

= Mismatch between training and
testing dialects can cause a large
increase in error rate

old




Speech Recognition
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The Noisy Channel Model

Language Model Acoustic Model
source channel
> W > P > a
P(w) (a|w)
&/\ - —
best observed
«—— decoder k
W a

w* = arg max P(w|a)
w
o arg max P(a|w)P(w)
w

/ \

Acoustic model: HMMs over Language model:
word positions with mixtures Distributions over sequences
of Gaussians as emissions of words (sentences)



Speech Model
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Acoustic Model
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Frame Extraction

%

= Aframe (25 ms wide) extracted every 10 ms

. 25 ms .
| | Preview of feature
| | extraction for each frame:
\ 1) DFT (Spectrum)
10ms .
‘ 2) Log (Calibrate)
a, a, a, 3) another DFT (!!?7?)

Figure: Simon Arnfield



Feature Extraction



Source / Filter

= Articulation process:

The vocal cord vibrations
create harmonics

The mouth is an amplifier

Depending on shape of
mouth, some harmonics are
amplified more than others
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Problem with Raw Spectrum
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Figures from Ratree Wayland
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Deconvolution / Liftering
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Deconvolution / Liftering
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Deconvolution / Liftering
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Deconvolution / Liftering

abs(dft) and liftered
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Graphs from Dan Ellis
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Final Feature Vector

= 39 (real) features per 10 ms frame:
= 12 MFCC features
= 12 delta MFCC features
= 12 delta-delta MFCC features
= ] (log) frame energy
= 1 delta (log) frame energy
= ] delta-delta (log frame energy)

= So each frame is represented by a 39D vector



Emission Model



Eﬁ HMMs for Continuous Observations

= Before: discrete set of observations -
35001
= Now: feature vectors are real-valued =l
. . . . 2500+
=  Solution 1: discretization
= Solution 2: continuous emissions ; 2000
= Gaussians E
=  Multivariate Gaussians il
=  Mixtures of multivariate Gaussians °
“g KEY
= Astate is progressively to0of o
« bet
= (Context independent subphone (~3 per B
phone) .o
= Context dependent phone (triphones) YAl e
" State tying of CD phone % TR 6(’)0 W0 100 120 = Ta0o
) frequency of first formant/Hz )




Vector Quantization

. . . Codebook of 256
] .
Idea: discretization AT

= Map MFCC vectors onto (NI 2

: (D 3
discrete symbols Input Feature Vector [ 4

= Compute probabilities D

. . (T ..
just by counting I

[T
(] 1 44— 4.4

. (o Compare to Codebook MMM |
This 'S Cal.lEd vector b T Oof“gs‘: chcif;
quantization or VQ D

= Not used for ASR any
more

= But: useful to consider as
a starting point

frequency of second fomant Hz
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= VQis insufficient for top-
quality ASR
= Hard to cover high- 308.3

dimensional space with
codebook

Gaussian Emissions

=  Moves ambiguity from the 608.91
model to the preprocessing

F, (Hz)

" |nstead: assume the 909,61
possible values of the
observation vectors are

normally distributed. 1210

, 3040 2188 1337 4853
= Represent the observation F, (Hz)

likelihood function as a
Gaussian?

From bartus.org/akustyk



Ef; Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and a variance:

Pleli o) = - exp (~ 582)

oV 2T

- P(X): P(x) is highest here at mean

P(x) is low here, far from mean
P(x)




Multivariate Gaussians

%

* |nstead of a single mean w and variance o?:

P(z|p,0) = 0\/— eXp (_ (332_0";)2)

= Vector of means u and covariance matrix 2

P(QZ‘[L, Z) — (QW)k/%|2|1/2 €XPp (—%(ZIZ o /«L)Tz_l(az o M))

= Usually assume diagonal covariance (!)
= Thisisn’t very true for FFT features, but is less bad for MFCC features



Gaussians: Size of X
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= u=[00] w = [0 0] w= [0 0]
" 3= > = 0.6l 5 =2l

= As 2 becomes larger, Gaussian becomes more spread
out; as 2 becomes smaller, Gaussian more
compressed

Text and figures from Andrew Ng



Gaussians: Shape of 2
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= As we increase the off diagonal entries, more correlation between
value of x and value of y

Text and figures from Andrew Ng



But we’'re not there yet

%

= Single Gaussians may do a sunor
bad job of modeling a
complex distribution in any
dimension

1500

= Even worse for diagonal
covariances

frequency of second formant/Hz

:

= Solution: mixtures of
Gaussians e

frequency of first formant/Hz

From openlearn.open.ac.uk



Mixtures of Gaussians

%

= Mixtures of Gaussians:

P($|/,L7;, EZ) — (27r)k/21|§37;|1/2 CXp (—%(Q} o 'ui)—rz’i_l(x B 'uz))

P($|/L,Z,C) — Zz CzP(i’?‘MuZz)

@‘;.

0.5 0.2 | ﬂ%

e —

0 0.5 I 0 0.5 |

From robots.ox.ac.uk http://www.itee.ug.edu.au/~comp4702



GMMs

Summary: each state has an emission
distribution P(x|s) (likelihood function)
parameterized by:

= M mixture weights

= M mean vectors of dimensionality D

= Either M covariance matrices of DxD or M
Dx1 diagonal variance vectors

Like soft vector quantization after all

= Think of the mixture means as being
learned codebook entries

» Think of the Gaussian densities as a
learned codebook distance function

=  Think of the mixture of Gaussians like a
multinomial over codes

= (Even more true given shared Gaussian
inventories, cf next week)




State Model
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State Transition Diagrams

= Bayes Net: HMM as a Graphical Model

wW wW wW

= State Transition Diagram: Markov Model as a Weighted FSA

:/_




ASR Lexicon

@..’” @, '”.‘@ ORCACAORO
.8 n n
08 °‘ Word model for "on
Word model for "the"
20
.12 @
DD D

Word model for "need" Word model for "I"

Figure: ] & M



Lexical State Structure

%

Word Model

byo) / \byloy P2 \PA0) Ty o)
Yoo oy Y
Observation I = @ l
Sequence
(spectral feature
vectors)

0, 0O 0; 04 O; 0

Figure: ] & M



Adding an LM

P(W, | W)
P(W, | w,)\
W]
P(W, [Wy)
P(W, W)
P(W, | W,)
w2
P(W,[W) ¢
[ J
e
P(W, | W,)

P(W, W)

\\P(WN | W)

Figure from Huang et al page 618
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State Space

= State space must include
= Current word (|V| on order of 20K+)
= |Index within current word (|L| on order of 5)
= E.g. (lec[t]ure) (though not in orthography!)

= Acoustic probabilities only depend on phone type
= E.g. P(x]|lec[t]ure) = P(x]|t)

= From a state sequence, Can read a word sequence



State Refinement



}fm Phones Aren’t Homogeneous

2000+

Frequency [Hz)

|:|_ mhilkobib Bl .
048152 a . 0937203
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Need to Use Subphones

Phone Model
b0)/ \bi0) 2(°3)/ n\\:’z@" XY
Observation 4 *
Sequence
(spectral feature
vectors) H H H H H H

0, 0, O 0,

Figure: ] & M
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A Word with Subphones

Figure: ] & M



}fm Modeling phonetic context
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“Need” with triphone models

«3-88-833-885-

#-n+iy n-iy+d iy—d+#

Figure: ] & M



Lots of Triphones

%

= Possible triphones: 50x50x50=125,000

= How many triphone types actually occur?

= 20K word WSJ Task (from Bryan Pellom)

= Word internal models: need 14,300 triphones
" Cross word models: need 54,400 triphones

" Need to generalize models, tie triphones
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State Tying / Clustering

[Young, Odell, Woodland
1994] Initial set of untied states

How do we decide which
triphones to cluster
together?

Use phonetic features (or
‘broad phonetic classes’)
= Stop

= Nasal

= Fricative

= Sibilant

= Vowel

= |ateral

R-Liquid?

Tie states 1n each leaf node

Figure: ] & M
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State Space

= State space now includes
Current word: |W| is order 20K
Index in current word: |L| is order 5

Subphone position: 3

E.g. (lec[t-mid]ure)

= Acoustic model depends on clustered phone context
= But this doesn’t grow the state space

= But, adding the LM context for trigram+ does
= (after the, lec[t-mid]ure)

= This is a real problem for decoding



Decoding



Inference Tasks

Most likely word sequence:
d - ae - d

Most likely state sequence:
d,-d,-d.-d,-aec-ae,-ae;-ae,-d,-d,-d;-d,-d.



Viterbi Decoding

G1(St, St—1) = P(x¢|s¢)P(5¢|5¢—1)

Vi(8¢) = Isnai( ¢t(3t, St—1)Vt—1 (St—1)
t—

Figure: Enrique Benimeli
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Viterbi Decoding

Figure: Enrique Benimeli
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Emission Caching

= Problem: scoring all the P(x|s) values is too slow
= |dea: many states share tied emission models, so cache them

10020

Word model for "on"

Word model for "the"

1 80 @
oo T

Word model for "need" Word modgel for "I"



Prefix Trie Encodings

%

= Problem: many partial-word states are indistinguishable

= Solution: encode word production as a prefix trie (with
pushed weights)

= A specific instance of minimizing weighted FSAs [Mohri, 94]

Figure: Aubert, 02



Beam Search

%

= Problem: trellis is too big to compute v(s) vectors

= |dea: most states are terrible, keep v(s) only for top states at

each time the ba.

the be.

s ~ the bi.

the b. the ba.
the ma.

.

the m.
and then.

at then.

J

—
= |mportant: still dynamic programming; collapse equiv states

the me.
the mi.

then a.
then e.
theni.

the be.
the ma.

then a.
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LM Factoring

" Problem: Higher-order n-grams explode the state space

= (One) Solution:
= Factor state space into (word index, Im history)

= Score unigram prefix costs while inside a word
= Subtract unigram cost and add trigram cost once word is complete




LM Reweighting

%

* Noisy channel suggests
P(z|w)P(w)
* In practice, want to boost LM
P(z|w)P(w)®
= Also, good to have a “word bonus” to offset LM costs
P(z|w)P(w)®w|”

= These are both consequences of broken independence
assumptions in the model



