Algorithms for NLP

Speech Inference

Taylor Berg-Kirkpatrick — CMU
Slides: Dan Klein — UC Berkeley

Project Announcements

%

= Due date postponed: now due Tuesday 9/27 at 11:59pm

= Will be using blackboard for jar and write-up submission
= We will test as soon as this is set up
= |nvites will be sent to everyone (will announce)

= Extra jar submission of your best system
= No spot-checks for extra jar... feel free to use approximations

= |nstructions for submission will be added to website

= |f using open-address w/ long keys, try this hash:
= int hash = ((int) (key A (key >>> 32)) * 3875239);

%

Project Grading

" |ate days: 5 total, use whenever
= But no credit for late submissions when you run out of late days!
= (Be carefull)

" Grading: Projects out of 10

= 6 Points: Successfully implemented what we asked

2 Points: Submitted a reasonable write-up

1 Point: Write-up is written clearly

1 Point: Substantially exceeded minimum metrics

Extra Credit: Did non-trivial extension to project

Why these Peaks?

= Articulation process:

The vocal cord vibrations
create harmonics

The mouth is an amplifier

Depending on shape of
mouth, some harmonics are
amplified more than others

()u(put sound "~ ======== > % C Output spectrum
= 0
S _q
1 \lll "l
””l |||I|||| ||||
= 0 1.000 2.000 000
Frequency (hertz)
B Filter function
o - 2()
Filter ~======ceccec==> < =

(Vocal tract)

y (decibe

Filter rati

-
e
e C
=
2
= o
= !
q S

&5

Source =i mim i i o - A Source spectrum
0

t

ibe

Vibrating vocal folds

7\ =~
/ -2()
Ry =
/ ,-“ .‘» 2 =
/ / N\ =
A N o 3() IIII
/ l"- \ | .
y %) \
). \W () 000
g r<

o, ncy (hertz

nj litude (dec

Sot

Airstream

Lungs

%

= Aframe (25 ms wide) extracted every 10 ms

Feature Extraction

. 25 ms .
| | Feature extraction
| | for each frame:
\ 1) DFT (spectrum)
10ms
{ 2) Log (prod -> sum)
a, a, a, 3) another DFT (lowpass)

Figure: Simon Arnfield

%

Deconvolution / Liftering

S

log <l” ||||||||m|||u||||ln)

/N
o (”||||||||H|II|||uu. m) T 18 (W\/\)

eeeeeeeee f

Speech Model

Sound types

Acoustic
observations

s000 [

Language
model

Acoustic
model

l|lllllrlll|ll

PR PP
|

Eﬁ HMMs for Continuous Observations

= Before: discrete set of observations -
3500
= Now: feature vectors are real-valued =l
. . . . 2500+
= Solution 1: discretization
= Solution 2: continuous emissions ; 2000
= Gaussians E
" Multivariate Gaussians Aol
= Mixtures of multivariate Gaussians :
E KEY
= A state is progressive 1000 o
« bet
= Context independent subphone (~3 per g
phone) -]
= Context dependent phone (triphones) val b o
= State tying of CD phone 0 I el el S W S
) frequency of first formant/Hz)

GMMs

Summary: each state has an emission
distribution P(x|s) (likelihood function)
parameterized by:

= M mixture weights

= M mean vectors of dimensionality D

= Either M covariance matrices of DxD or M
Dx1 diagonal variance vectors

Like soft vector quantization after all

= Think of the mixture means as being
learned codebook entries

» Think of the Gaussian densities as a
learned codebook distance function

= Think of the mixture of Gaussians like a
multinomial over codes

= (Even more true given shared Gaussian
inventories, cf next week)

Speech Model

Sound types

Acoustic
observations

s000 [

Language
model

Acoustic
model

l|lllllrlll|ll

PR PP
|

State Model

%

State Transition Diagrams

= Bayes Net: HMM as a Graphical Model

wW wW wW

= State Transition Diagram: Markov Model as a Weighted FSA

:/_

ASR Lexicon

@..’” @, '”.‘@ ORCACAORO
.8 n n
08 °‘ Word model for "on
Word model for "the"
20
.12 @
DD D

Word model for "need" Word model for "I"

Figure:] & M

Lexical State Structure

%

Word Model

byo) / \byloy P2 \PA0) Ty o)
Yoo oy Y
Observation I = @ l
Sequence
(spectral feature
vectors)

0, 0O 0; 04 O; 0

Figure:] & M

Adding an LM

P(W, | W)
P(W, | w,)\
W]
P(W, [Wy)
P(W, W)
P(W, | W,)
w2
P(W,[W) ¢
[J
e
P(W, | W,)

P(W, W)

\\P(WN | W)

Figure from Huang et al page 618

%

State Space

= State space must include
= Current word (|V| on order of 20K+)
= |Index within current word (|L| on order of 5)
= E.g. (lec[t]ure) (though not in orthography!)

= Acoustic probabilities only depend on phone type
= E.g. P(x]|lec[t]ure) = P(x]|t)

= From a state sequence, Can read a word sequence

State Refinement

}fm Phones Aren’t Homogeneous

2000+

Frequency [Hz)

|:|_ mhilkobib Bl .
048152 a . 0937203

%

Need to Use Subphones

Phone Model
b0)/ \bi0) 2(°3)/ n\\:’z@" XY
Observation 4 *
Sequence
(spectral feature
vectors) H H H H H H

0, 0, O 0,

Figure:] & M

%

A Word with Subphones

Figure:] & M

}fm Modeling phonetic context

| "-|| | |, " ' f | |
o \" | ' | ‘ i
Wi ‘,‘“‘M‘W i
oz A _TER———— . —

Tl L

ALY riy m iy

“Need” with triphone models

«3-88-833-885-

#-n+iy n-iy+d iy—d+#

Figure:] & M

Lots of Triphones

%

= Possible triphones: 50x50x50=125,000

= How many triphone types actually occur?

= 20K word WSJ Task (from Bryan Pellom)

= Word internal models: need 14,300 triphones
" Cross word models: need 54,400 triphones

" Need to generalize models, tie triphones

%

State Tying / Clustering

[Young, Odell, Woodland
1994] Initial set of untied states

How do we decide which
triphones to cluster
together?

Use phonetic features (or
‘broad phonetic classes’)
= Stop

= Nasal

= Fricative

= Sibilant

= Vowel

= |ateral

R-Liquid?

Tie states 1n each leaf node

Figure:] & M

Eﬁ FSA for Lexicon + Bigram LM

P(W, | W)
P(W, | w])\
W]
P(W, | W)
P(W, | W,)
P(W, | W,)
WL
P(W, | W) ¢
L
[]
P(W, | W,)

P(W, | W)

\\P(WN | W)

Figure from Huang et al page 618

%

State Space

= Full state space

(LM context, lexicon index, subphone)

= Details:
= LM context is the past n-1 words

= Lexicon index is a phone position within a word (or a trie of the
lexicon)

= Subphone is begin, middle, or end
= E.g.(after the, lec[t-mid]ure)

= Acoustic model depends on clustered phone context
= But this doesn’t grow the state space

Decoding

Inference Tasks

Most likely word sequence:
d - ae - d

Most likely state sequence:
d,-d,-d.-d,-aec-ae,-ae;-ae,-d,-d,-d;-d,-d.

State Trellis

%

lect[t-begure .j.‘ """""" Y . ¢t (St—17 St) = P(at\st)P(st|st_1)

d[o-end]g

® Pla,s)=]] Plals))P(se|se-1)

t

® — H¢t(8i—1,87;)

t

ca[t-beg]

rla-mid]t

omidon | @ @ @@ @

Figure: Enrique Benimeli

Naive Viterbi

lect[t-beg|ure

d[o-end]g

ca[t-beg]

rla-mid]t

a[c-mid]orn

’Ut(St) = IglaX Ut—l(St—1)¢t(3t—1, St)
t—1

Beam Search

%

= Problem: trellis is too big to compute v(s) vectors

= |dea: most states are terrible, keep v(s) only for top states at

each time the ba.

the be.

s ~ the bi.

the b. the ba.
the ma.

.

the m.
and then.

at then.

J

—
= |mportant: still dynamic programming; collapse equiv states

the me.
the mi.

then a.
then e.
theni.

the be.
the ma.

then a.

Beam Search

%

= At each time step
= Start: Beam (collection) v, of hypotheses s at time t
" Foreachsinv,
= Compute all extensions s’ at time t+1
= Score s’ from s
" Puts’inv,,, replacing existing s’ if better
= Advance to t+1

= Beams are priority queues of fixed size* k (e.g. 30)
and retain only the top k hypotheses

Beam Search

lect[t-beg]ure

d[o-end|g

calt-beg]

rla-mid]t

a[c-mid]orn

Prefix Trie Encodings

%

= Problem: many partial-word states are indistinguishable

= Solution: encode word production as a prefix trie (with
pushed weights)

= A specific instance of minimizing weighted FSAs [Mohri, 94]

Example: Aubert, 02

%

LM Score Integration

" |magine you have a unigram language model
* When does a hypothesis get “charged” for cost of a word?

" |n naive lexicon FSA, can charge when word is begun
" |n naive prefix trie, don’t know word until the end
= ... but you can charge partially as you complete it

%

Emission Caching

= Problem: scoring all the P(x|s) values is too slow
= |dea: many states share tied emission models, so cache them

10020

Word model for "on"

Word model for "the"

1 80 @
oo T

Word model for "need" Word modgel for "I"

%

LM Reweighting

* Noisy channel suggests
P(z|w)P(w)
* In practice, want to boost LM
P(z|w)P(w)®
= Also, good to have a “word bonus” to offset LM costs
P(z|w)P(w)®w|”

= The needs for these tweaks are both consequences of broken
independence assumptions in the model, so won’t easily get
fixed within the probabilistic framework

Training

Eﬁ What Needs to be Learned?

= Emissions: P(x | phone class)
= Xis MFCC-valued

= Transitions: P(state | prev state)
= |f between words, this is P(word | history)
= |f inside words, this is P(advance | phone class)
= (Really a hierarchical model)

E& Estimation from Aligned Data

= What if each time step was labeled with its (context-
dependent sub) phone?

/k/ /ae/ /ae/ /ae/ /t/

= Can estimate P(x|/ae/) as empirical mean and (co-)variance of
x's with label /ae/

= Problem: Don’t know alignment at the frame and phone level

%

Forced Alignment

= What if the acoustic model P(x| phone) was known?
= ... and also the correct sequences of words / phones

= Can predict the best alignment of frames to phones

“speech lab”

ssssssssppppeeeeeeetshshshshllllaeaeaebbbbb

A B AR I T A A AN R M
LA N o " USSR _l_;u &’

FIIMEL) b

e oty

LT Y

soo0 |- Hevel

= Called “forced alignment”

%

= Create a new state space that forces the hidden variables to transition
through phones in the (known) order

Forced Alignment

= Still have uncertainty about durations

= |n this HMM, all the parameters are known
= Transitions determined by known utterance
= Emissions assumed to be known

= Minor detail: self-loop probabilities

= Just run Viterbi (or approximations) to get the best alignment

%

EM for Alignment

= |nput: acoustic sequences with word-level transcriptions

= We don’t know either the emission model or the frame
alignments

= Expectation Maximization (Hard EM for now)
= Alternating optimization

" Impute completions for unlabeled variables (here, the states at each
time step)

= Re-estimate model parameters (here, Gaussian means, variances,
mixture ids)

= Repeat
= One of the earliest uses of EM!

b3 Soft EM

* Hard EM uses the best single completion
= Here, single best alignment

= Not always representative

= Certainly bad when your parameters are initialized and the alignments
are all tied

= Uses the count of various configurations (e.g. how many tokens of /
ae/ have self-loops)

= What we’d really like is to know the fraction of paths that

include a given completion
= E.g.0.32 of the paths align this frame to /p/, 0.21 align it to /ee/, etc.
= Formally want to know the expected count of configurations

= Key quantity: P(s, | x)

Computing Marginals

i =1 b
P(St CE)
P(s¢|lx) = ’

(sel2) = =55

=)
= sum of all paths through s at t

i=3) sum of all paths
i =4 ’
i=2"5 '

Forward Scores

ve(se) = max Vi—1(8¢—1)0t(St—1, St)
t—1

Oét(St) = Z at—l(St—l)th(St—l,St)

St—1

Backward Scores

Be(se) = Y Bis1(se4+1)Pe(se, 5141)

St+1

Total Scores

P(st,) = ar(st)Be(s¢)

P(z) =Y ai(s)Bi(s0)

= ar(stop)

= Po(start)

Fractional Counts

%

* Computing fractional (expected) counts
= Compute forward / backward probabilities
= For each position, compute marginal posteriors
= Accumulate expectations

= Re-estimate parameters (e.g. means, variances, self-loop
probabilities) from ratios of these expected counts

Ef; Staged Training and State Tying

= Creating CD phones: LT
= Start with monophone, do EM /’/ \\\A
tralnlng N t-iy+n t-1y+ng fay+l s-1y+l
= Clone Gaussians into triphones 0 1) 1) 0 1) ¥) 0 1) ¥) 0 1) ¥)
= Build decision tree and cluster etc
.
Gaussians * * * *
(3)

= Clone and train mixtures
(GMMs)

= General idea: | * |
" |ntroduce complexity gradually @ +

= |nterleave constraint with
flexibility . ete

