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watashi wa CMU de kouen wo shiteimasu

I am giving a talk at CMU (end)
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Estimate the Probability of Next Word

F = “watashi wa kouen wo shiteimasu”
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In Other Words, Translation Can be
Formulated As:

A Probability Model

A Translation Algorithm

P(E∣F )=∏i=1

I+1

P(ei∣F ,e1
i−1)

i = 0
while e

i
 is not equal to “(end)”:

i ← i+1
 e

i
 ← argmax

e
 P(e

i
|F, e

1,i-1
)

We learn the probabilities with
neural networks!
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Why is This Exciting?

● Amazing results:
Within three years of invention, outperforming models
developed over the past 15 years, and deployed in
commercial systems

● Incredibly simple implementation:
Traditional machine translation (e.g. 6k lines of Python)
Neural machine translation (e.g. 280 lines of Python)

● Machine translation as machine learning:
Easy to apply new machine techniques directly
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Predicting Probabilities
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Translation Model → Language Model

Translation Model Probability

P(E∣F )=∏i=1

I+1

P(ei∣F ,e1
i−1)

Language Model Probability

P(E)=∏i=1

I+1

P(ei∣e1
i−1)

Forget the input F

P(ei∣e1
i−1)Problem: How to predict next word
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Predicting by Counting

● Calculate word strings in corpus, take fraction

P(wi∣w1…w i−1)=
c (w1…wi)
c (w1…w i−1)

i live in pittsburgh . </s>
i am a graduate student . </s>
my home is in michigan . </s>

P(am | <s> i) = c(<s> i am)/c(<s> i) = 1 / 2 = 0.5

P(live | <s> i) = c(<s> i live)/c(<s> i) = 1 / 2 = 0.5
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Problems With Counting

● Weak when counts are low:

i live in pittsburgh . </s>
i am a graduate student . </s>
my home is in michigan . </s>

Training:

P(W=<s> i live in michigan . </s>) = 0

<s> i live in michigan . </s>

P(michigan|<s> i live in) = 0/1 = 0Test:

● Solutions: Restricting length, smoothing
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Log-linear Language Model [Chen+ 00]
● Based on the previous words, give all words a score s

w
2,giving

 = w
1,a

 = 

a
the
talk
gift
hat
…

3.0
2.5

-0.2
0.1
1.2
…

b =

-0.2
-0.3
1.0
2.0

-1.2
…

-6.0
-5.1
0.2
0.1
0.6
…

s = 

-3.2
-2.9
1.0
2.2
0.6
…

Previous words: “giving a”

Words
we're

predicting

How likely
are they?

How likely
given the
previous

word is “a”?

How likely
given two

words before
is “giving”?

Total
score
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Log-linear Language Model [Chen+ 00]
● Convert scores into probabilities by taking exponent

and normalizing (called the softmax function)

p (ei=x∣ei−n+1
i−1 )= e s(ei= x∣ei−n+1

i−1 )

∑~x
es(ei=

~x∣ei−n+1
i−1 )

s = 

-3.2
-2.9
1.0
2.2
0.6
…

a
the
talk
gift
hat
…

p(ei∣ei−n+1
i−1 )=softmax (s(ei∣ei−n+1

i−1 ))

p = 

0.002
0.003
0.329
0.444
0.090

…

softmax
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Learning Log Linear Models

● Often learn using Stochastic Gradient Descent (SGD)

● Basic idea: Given a training example, find the
direction that we should move parameters w to
improve probability of word e

i

● Move the parameters in that direction

δ= d
d w

p (ei∣ei−n+1
i−1 ) (gradient of

the probability)

w←w+αδ
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Problem with Linear Models:
Cannot Deal with Feature Combinations

farmers eat steak  →  high
farmers eat hay →  low

cows eat  steak  →  low
cows eat  hay    →  high

● Cannot express by just adding features. What do we do?
● Remember scores for each combination of words

w
2,1,farmers,eat

 = 
2.0

-2.1
…

steak
hay
…

w
2,1,cows,eat 

= 
-1.2
2.9
…

explosion in number of parameters, memory usage
● Neural nets!
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Neural Networks
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Problem: Can't learn Feature
Combinations

● Cannot achieve high accuracy on non-linear functions

X

O

O

X
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Solving Non-linear Classification
● Create two classifiers

X
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O

X
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Example
● These classifiers map to a new space
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Example
● In the new space, the examples are linearly separable!
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Example

● The final net

tanh

tanh

φ
0
[0]

φ
0
[1]

1

φ
0
[0]

φ
0
[1]

1

1

1

-1

-1

-1

-1

1 1
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tanh

φ
1
[0]

φ
1
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φ
2
[0]
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Language Modeling with
Neural Nets
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Overview of Log Linear Language Model

e
i-1

e
i-2

1

soft
max

W
1

W
2

b

p
i

e
i-1 

and e
i-2 

are vectors where the element corresponding to
the word is 1:

W
1
, W

2 
are weight matrices

 
b is a weight vector

e
i-1

 = {1,      0,      0,      0,      0,      ...}
e

i-2
 = {0,      0,      0,      0,      1,      ...}

a the talk gift giving

pi=softmax (b+∑k=1

n−1

W ke i−k)
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Neural Network Language Model

e
i-1

e
i-2

1

tanh

W
1

W
2

b

h
i

● Add a “hidden layer” that calculates representations

hi= tanh (b+∑k=1

n−1

W k ei−k)

soft
max p

i

W
h

pi=softmax (W hhi )

tanh → 
-4 -3 -2 -1 0 1 2 3 4

-1

0

1
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What Can We Do With Neural Nets?
● Learn shared “features” of the context

● Example: What do livestock eat?
“ {cows, horses, sheep, goats} {eat, consume, ingest}”

● If both are true, positive number, otherwise negative

● Simple features must remember all 4x3 combinations!

W
2
[1]= W

1
[1]= b[1]=-1

eat
consume
ingest
cows
horses
sheep
goats
…

-1
-1
-1
1
1
1
1

…

1
1
1

-1
-1
-1
-1
…

cows eat → tanh(1)

men eat → tanh(-1)

cows find → tanh(-1)
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Neural Network Language Model
[Nakamura+ 90, Bengio+ 06]

<s>    <s>     this     is        a      pen    </s>

● Convert each word into word representation, 
considering word similarity

● Convert the context into low-dimensional hidden
layer, considering contextual similarity
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Learning Neural Networks:
Back Propagation

● Calculate the direction the last layer needs to go in

● Pass this information backwards through the network

e
i-1

e
i-2

1

tanh

W
1

W
2

b

h
i

soft
max p

i

W
h

δ
p

δ
h Compare with true

answer and calculate
gradient

Back-propagation
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Recurrent Neural Nets
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Recurrent Neural Nets (RNN)

● Pass output of the hidden layer from the last time step
back to the hidden layer in the next time step

● Why?: Can remember long distance dependencies

● Example:

e
i-1

e
i-2

1

tanh

W
1

W
2

b

h
i

soft
max p

i

W
h

W
r

He doesn't have very much confidence in himself
She doesn't have very much confidence in herself
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RNNs as Sequence Models

NET NET NET NET

x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4
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Recurrent Neural Network Language Model
[Mikolov+ 10]

<s>    <s>     this     is        a      pen    </s>

● Greatly improves accuracy of machine translation,
speech recognition, etc.
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Calculating Gradients for RNNs

NET NET NET NET

x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4 δ

o,4

● First, calculate values forward
● Propagate errors backward

δ

δ
o,3

δ

δ
o,2

δδ

δ
o,1
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The Vanishing Gradient Problem

NET NET NET NET

x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4 δ

o,4

δδδδ

mediumsmalltinyminiscule
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Long Short-term Memory
[Hochreiter+ 97]

● Based on a linear function that preserves previous
values

● Gating structure to control information flow
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What Can a Recurrent Network Learn?
[Karpathy+ 15]
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Encoder-Decoder
Translation Model

[Kalchbrenner+ 13, Sutskever+ 14]
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Recurrent NN Encoder-Decoder Model
[Sutskever+ 14]

this     is      a    pen  </s>

kore  wa   pen  desu </s>

● In other words, exactly like RNN language model,
but first “reads” the input sentence

P(e1
I∣f 1

J )=∏i=1

I+1

P(ei∣f 1
J , e1

i−1)

kore penwa desu
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Example of Generation

this

</s>

ais pen </s>

kore wa pen desu

Read the input Write the output

kore penwa desu

argmaxei P(ei∣f 1
J , e1

i−1)



  37

Neural Machine Translation

So, How Well Does It Work?

Answer: competitive with strong phrase-based
traditional systems! (With a little work...)

Method BLEU
Phrase-based Baseline 33.30
Encoder-Decoder 26.17
Encoder-Decoder w/ Tricks 34.81

[Sutskever et al. 2014]
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Trick 1: Beam Search

● Greedy search: select one-best at every time step
● Problem: locally optimal decisions not globally optimal

● Beam search: maintain several hypotheses every step

<s> a

an

the

animal

dog

animal

<s>

<s>

a

a

dog

animal
Ref:
“an animal”

�
�
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Trick 2: Ensembling

● Average two models together (in regular or log space)

a
the
talk
gift
hat
…

p
1
 = 

0.002
0.003
0.329
0.444
0.090

…

Model 1

p
2
 = 

0.030
0.021
0.410
0.065
0.440

…

Model 2

● Why does this work?
● Errors tend to be uncorrelated
● Errors tend to be less confident

p
e
 = 

0.016
0.012
0.370
0.260
0.265

…

Model 1+2
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Small Example on Japanese-English

● Trained on 116k short, conversational sentences

BLEU RIBES

Moses PBMT 38.6 80.3

Encoder-Decoder 39.0 82.9
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Does it Stand Up to Manual Inspection?

Input: バスタブからお湯があふれてしまいました。
True: the hot water overflowed from the bathtub .
PBMT: the hot water up the bathtub . 
EncDec:the bathtub has overflowed .

Answer: Yes, to some extent

Input: コーヒーのクリーム入りをください。
True: i 'll have some coffee with cream , please .
PBMT: cream of coffee , please . 
EncDec: i 'd like some coffee with cream .
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But, There are Problems.

Repeating:

Input: どのファンデーションが私の肌の色に近いですか。
True: which foundation comes close to my natural skin color ?
PBMT: which foundation near my natural skin color ? 
EncDec: which foundation is my favorite foundation with a foundation ?

Giving up:

Input: ギブス を し な けれ ば な り ま せ ん 。
True: you 'll have to have a cast .
PBMT: i have a ギブス . 
EncDec: you have to have a chance .
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Attentional Models
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Problem: Encoder-Decoder Models have
Trouble with Longer Sentences

[Pouget-Abadie+ 2014]

PBMT

RNN
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Attentional Nets [Bahdanau+ 15]

● While translating, decide which word to “focus” on
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Looking Carefully at 
(One Step of) Attention

this ais pen

a
1

a
2

a
3

a
4

softmax

α
1

α
2

α
3

α
4

* + * + * + * = * W + b
  → softmax(●) 
    = P(e

1
 | F)



  47

Neural Machine Translation

Exciting Results!

● IWSLT 2015: 
Best results on de-en

● WMT 2016: 
Best results on most language pairs

● WAT 2016: 
Best results on most language pairs
(NAIST/CMU model 1st on ja-en)
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What Has Gotten Better?
Largely Grammar [Bentivogli+ 16]
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Other Things to Think About
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What is Our Training Criterion?

● We train our models for likelihood

● Evaluate our models based on quality of the generated
sentences (BLEU)

● How do we directly optimize for translation quality?
● Reinforcement learning [Ranzato+16]
● Minimum risk training [Shen+16]
● Beam search optimization [Wiseman+16]
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How Do We Handle Rare Words?

● Neural MT has trouble with large vocabularies
● Speed: Takes time to do a big softmax
● Accuracy: Fail on less common training examples

● Solutions:
● Sampling-based training methods [Mnih+12]
● Translate using subword units [Sennrich+16]
● Translate using characters [Chung+16]
● Incorporate translation lexicons [Arthur+16]
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Can We Train Multi-lingual Models?

● Multi-lingual data abounds, and we would like to use it

● Methods:
● Train individual encoders/decoders for each language,

but share training [Firat+16]
● Train a single encoder/decoder for all languages

[Johnson+16]
● Transfer models from one language to another

[Zoph+16]
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What Else Can We Do?

● Conversation [Sordoni+ 15, Vinyals+ 15]
Input: utterance, Output: next utterance

● Executing programs [Zaremba+ 14]
Input: program, Output: computation result

● And many others!
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Conclusion/Tutorials/Papers
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Conclusion

● Neural MT is exciting!
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Tutorials

● My Neural MT Tips Tutorial:
https://github.com/neubig/nmt-tips

● Kyunghyun Cho's DL4MT Tutorial:
http://github.com/nyu-dl/dl4mt-tutorial

● Thang Luong, Kyunghyun Cho, and Chris Manning's
Tutorial at ACL 2016:
https://sites.google.com/site/acl16nmt/

● Rico Sennrich's Tutorial at AMTA 2016:
http://statmt.org/mtma16/uploads/mtma16-neural.pdf

https://github.com/neubig/nmt-tips
http://github.com/nyu-dl/dl4mt-tutorial
https://sites.google.com/site/acl16nmt/
http://statmt.org/mtma16/uploads/mtma16-neural.pdf
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