
The Hebrew University of Jerusalem
Faculty of Mathematics and Sciences

School of Computer Science and Engineering

Master of Science Thesis

Persistent Particle Filters For
Background Subtraction

by

Yair Movshovitz-Attias

Supervisor: Shmuel Peleg

Jerusalem, 2010

To Dana. This work might not have come to light without your
continuous support. Our weekly drives out of town, our family
seminar, were the catalysts for so many ideas that I lost count
after a while. I am lucky to have you.

Abstract

Moving objects are usually detected by measuring the appearance
change from a background model. The background model should adapt
to slow changes such as illumination, but detect faster changes caused
by moving objects. Particle filters do an excellent task in modeling non
parametric distributions as needed for a background model, but may
adapt too quickly to the foreground objects.

A persistent particle filter is proposed, following bacterial persistence.
Bacterial persistence is linked to the random switch of bacteria between
two states: A normal growing cell and a dormant but persistent cell. The
dormant cells can survive stress such as antibiotics. When a dormant
cell switches to a normal status after the stress is over, bacterial growth
continues.

Similar to bacteria, particles will switch between dormant and active
states, where dormant particles will not adapt to the changing envi-
ronment. A further modification of particle filters allows discontinuous
jumps into new parameters enabling foreground objects to join the back-
ground when they stop moving. This can also quickly build multi-modal
distributions.

Contents

1 Introduction 1
1.1 Thesis Overview . 1

2 Motivation And Related Work 3

3 Particle Filters - Overview 7
3.1 Recursive State Estimation . 7
3.2 Bayes Filter . 8
3.3 Particle Filtering . 9

4 Particle Filters for Background Modeling 11
4.1 Prediction . 11
4.2 Update . 11
4.3 Re-Sample . 12
4.4 Probability map and segmentation 12

5 Persistent Particles 13
5.1 Dormant Particles . 13
5.2 Color Jump For Scene Change 14

6 Experiments 17

7 In Practice 23
7.1 Cleaning the foreground mask 23
7.2 Speed And Scalability . 25

8 Discussion 26

Bibliography 27

List of Figures 29

iii

Chapter 1

Introduction

As the number of video surveillance cameras increases, the need arises for
sophisticated methods to manipulate, analyze, and display the data captured
in them. One of the most fundamental building blocks of any such system is the
ability to detect foreground objects in the scene and separate them from the
background. This ability is a prerequisite for many applications, such as object
tracking and identification, activity monitoring, and video summarization.

Generally, the system is made up of a stationary video surveillance camera
monitoring a scene in which foreground objects move about in the frame. The
goal is to extract the interesting foreground objects (people, cars, etc) from the
rest of the frame. While foreground objects are characterized by movement,
the system needs to be robust to movement that is caused by other factors such
as camera shake or dynamic background (trees in the wind, flags, or water).
Robustness should be achieved for other changes in the scene such as ones
caused by change in illumination.

Background subtraction is a common approach to extract moving objects
from a video sequence. It is comprised of two modules, Background Modeling,
and Foreground detection. A background model is a representation of the
background scene. Background models can be as simple as a single color for
each pixel, or can include a representation of the color distribution of the
background.

Foreground detection is the task of segmenting the current frame into mov-
ing objects (foreground) and stationary regions (background). Each pixel in
a new frame is compared against the background model, and is recognized as
a foreground object if it differs significantly from the model. The results of
the segmentation process can be used as one of the inputs for the background
modeling stage in a recursive manner.

1.1 Thesis Overview

The remainder of this thesis is organized as follows. A review of related works is
presented in Chapter 2. In Chapter 3 the Particle Filter algorithm is described
along with the needed Control Theory background. A naive implementation of
Particle Filtering for background subtraction is detailed in Chapter 4. Follow-
ing this description, Chapter 5 analyzes the naive technique’s deficiencies and
presents the notation of a Persistent Particle Filter. It outlines the Bacteria

1

CHAPTER 1. INTRODUCTION 2

Filters algorithm, which can overcome many of the shortcomings of the naive
algorithm. Experiments and results are shown in Chapter 6, and the thesis
concludes with a discussion at Chapter 8

Chapter 2

Motivation And Related Work

As Background Subtraction is a fundamental tool in computer vision it has
been extensively researched in the last decade. Over the years many algo-
rithms have been presented with increasing complexity and success. However,
the problem of accurately identifying foreground regions remains a challenge
and so research continues in this field. In this chapter we describe a number
of noteworthy techniques for background subtraction, and analyze their prop-
erties.

Unimodal Background

Simple background models assume that the color at each pixel over time can be
modeled by a unimodal distribution. Wren et al. [Wren et al., 1997] describe a
method in which each pixel is modeled as a Gaussian and is estimated using a
mean value µt and a covariance MatrixKt. In each time step the parameters are
adapted to account for lighting changes. The unimodal assumption fails when
the scene contains background motion, such as trees moving in the wind or
ripples on water, and when the camera is shaking. It also introduces difficulties
when trying to model lighting changes and objects that are added or removed
from the background.

Mixture of Gaussians

Non stationary backgrounds have been estimated by the Mixture of Gaussians
(MoG) technique [Stauffer and Grimson, 1999; Lee et al., 2003; Javed et al.,
2002; KaewTraKulPong and Bowden, 2001]. Each pixel is modeled by a distri-
bution composed of K Gaussians (usually K = 3 to 5). The probability that
the current pixel value It belongs to the background is given by

P (It) =

K∑
i=1

ωi,t · N (It, µi,t,Σi,t) (2.1)

where ωi,t is the weight given to the i’th Gaussian at time t (what portion
of the data is accounted for by the Gaussian), N is the Normal distribution
Probability Density Function with µi,t and Σi,t being the mean and covariance

3

CHAPTER 2. MOTIVATION AND RELATED WORK 4

matrix respectively. Usually, for computational reasons, the covariance matrix
is assumed to be of the form

Σi,t = σ2
i I (2.2)

This assumes that the red, green, and blue channels are independent and have
the same variance. The Gaussians’ parameters are modified at each time step
to reflect the changes in the scene. Every new value It is checked against the
pixel’s current K components until a match is found. A match is defined if the
pixel value lies within 2.5 times the standard deviation of the Gaussian. If no
match is found, the Gaussian with the lowest weight is discarded, and a new
one is created with a mean equal to the pixel value, a large initial variance,
and a low weight. The weights of all components are adjusted by

ωi,t = (1− α)ωi,t−1 + αMi,t (2.3)

where α is the learning rate that determines how quickly the model adapts.
Mi,t = 1 if there was a match for the i’th Gaussian and Mi,t = 0 otherwise.
The weights are then re-normalized to 1. The Gaussian parameters are left
unchanged for components that did not have a match. For those that match
the new observation the update is as follows

µt = (1− ρ)µt−1 + ρIt (2.4)

σ2
t = (1− ρ)σ2

t−1 + ρ(It − µt)T (Itµt) (2.5)

where the learning rate ρ is computed using

ρ = α · N (It|µt, σt) (2.6)

The MoG technique may fail to accurately model fast variation in the scene
with just a small number of Gaussians. If the adaptation of the Gaussian pa-
rameters to the changes in the scene is fast, slow objects can be absorbed into
the background model. When the adaptation is slow the model has trouble de-
tecting fast changes to the background such as those produced by illumination
change [Toyama et al., 1999].

Histograms

Modeling the background distribution with histograms is a simple, yet robust,
technique. Each pixel holds a histogram of the colors that were present at its
location over some time period. Spatial information can also be integrated by
adding neighborhood pixel values into the histogram [Ko et al., 2008]. The his-
togram can be estimated recursively by updating the prior histogram, weighted
by α < 1, with the current color weighted by (1−α). Pixel histograms are non
parametric and can account for any type of multi-modal distribution. However,
the number of bins l in the histogram is fixed and this quantization can greatly
influence the results depending on the video being processed. Moreover, this
technique does not scale gracefully. To model color videos the histogram will
need to contain l3 bins in RGB space, which produces histograms that are not
only very large but are also sparse. Addressing this problem by decoupling
the channels and using 3 separate histograms reduces the memory required to
3l bins but can cause classification errors as illustrated by the toy example in
Figure 2.1.

CHAPTER 2. MOTIVATION AND RELATED WORK 5

Figure 2.1: The shortcomings of treating the color channels independently can be understood
by examining a toy example, displaying repetitive background motions between a tree leaf
moving in the wind and the sky that is visible behind it. Let the distribution of a certain
pixel be such that half the time its color is blue (sky), and half the time it is green (leaf).
We omit the Red channel for simplicity. We would expect the distribution to be such that
green/blue would get a 50% probability of belonging to the background, and all other colors
would have probability (close to) 0. However, when using information from only one color
channel at a time, any color having a green or blue component (e.g. cyan: green + blue) will
have high probability.

Codebook

Kim et al. [Kim et al., 2005] outline a non parametric, compressed representa-
tion of the distribution using a codebook model. Samples of the distribution at
each pixel are clustered into a set of code words. Every pixel has a codebook
C = {c1, c2, . . . , cL}. The length L of the codebook for each pixel is decided
according to its sample variance. A code word ci is made up of an RGB vector
vi = (Ri, Gi, Bi) and an auxiliary 6-tuple auxi =< Îi, Ǐi, fi, λi, pi, qi > where:

Î , Ǐ : the max and min brightness that the code word accepted.

f : the frequency of the repetitions of the codeword.

λ : the longest interval during the training period that the code

word has not recurred.

p, q :the first and last frame number in which the codeword has occurred.

When a new value x = (R,G,B) is encountered it is compared with all the
codewords ci of the pixel and a match is defined if

• colordist(x,vi) < ε

• ‖x‖ ∈ [Ilow, Ihi]

CHAPTER 2. MOTIVATION AND RELATED WORK 6

where

Ilow = αÎi (2.7)

Ihi = min{βÎ, Ǐ
α
} (2.8)

p2 = ‖x‖2 cos2 θ =
< x,vi >

2

‖vi‖2
(2.9)

colordist(x,vi) =

√
‖x‖2 − p2 (2.10)

And α < 1, usually 0.4, β > 1, usually 1.1. If a match is found with any
of the codewords the new value is marked as background, else it is marked as
foreground. The model is built using a long training period where it is assumed
that no objects are in the scene.

By using a Persistent Particle Filter for each pixel we can address these is-
sues. The method has the ability to model arbitrary multi-modal distributions,
thus can handle repetitive background movements and illumination changes;
It scales easily to the 3D color space in terms of memory, without making
independence assumptions that sacrifice accuracy; And it does not require a
training period without moving objects.

Chapter 3

Particle Filters - Overview

3.1 Recursive State Estimation

State Estimation is the process of estimating quantities that are not directly
observable, but can be inferred, using data from other, observable, quantities
called measurements. The group of Probabilistic State Estimation techniques,
to which Particle Filtering belongs, computes probability distributions over
possible states.

A state xt is a description, at time t, of a system (e.g. robot location,
laptop battery level, the weather), for which it is not possible to get direct
information on. A measurement zt is data that can be acquired directly from
the environment (sonar range finder, volts in the battery, humidity in the air).

The state xt is stochastically generated from the state xt−1. The evolution
of the state can be expressed using the probability distribution

p(xt|x0:t−1, z0:t−1) (3.1)

which is called the State Transition Probability. A common assumption is that
the state x is complete, i.e., it holds sufficient information on previous states, or
more precisely, given the state at time t− 1 the state at time t is independent
of the measurements

p(xt|x0:t−1, z0:t−1) = p(xt|xt − 1) (3.2)

Note that this entails that the system is a Markov Model. As the states are
hidden and need to be estimated from the measurements, this entails that the
system is in fact a Hidden Markov Model.

Another process which can be modeled using a probability distribution is
the generation of measurements

p(zt|x0:t, z0:t−1) = p(zt|xt) (3.3)

Which is called the Measurement Probability and, again, the equation holds if
x is a complete state.

This model is known as the Dynamic System Model. Alternatively, the dy-
namic system can be represented as a set of two equations: the State Transition
Equation

xt = f(xt−1, µt−1) (3.4)

7

CHAPTER 3. PARTICLE FILTERS - OVERVIEW 8

where f is the evolution function and µt−1 is added noise called the State Noise,
and the Measurement Equation

zt = g(xt, εt) (3.5)

where εt is added noise called the Measurement Noise.
Recursive Filters are techniques which estimate the state using a recursive

strategy, they are composed of (at least) two stages:

Predict In the prediction stage the next state is predicted

p(xt−1|z0:t−1)→ p(xt|z0:t−1) (3.6)

Update In the update stage the new measurements are incorporated.

p(xt|z0:t−1)→ p(xt|z0:t) (3.7)

These steps are performed in alternating fashion.

3.2 Bayes Filter

The most general recursive filter is the Bayes Filter. The Bayes Filter calculates
the state estimate directly from the measurements and previous state. Its
prediction and update stages are as follows:

Prediction

p(xt|z0:t−1) =

∫
p(xt|xt−1)p(xt−1|z0:t−1)dxt−1 (3.8)

This equation is also known as the Chapman-Kolmogoroff equation. It
is the prior of xt at time t without knowledge of zt

Update In the update step the posterior probability density function (pdf) is
computed from the predicted pdf and the new measurement

p(xt|z0:t) =
p(z0:t|xt)p(xt)

p(z0:t)
(3.9)

=
p(zt, z0:t−1|xt)p(xt)

p(zt, z0:t−1)
(3.10)

=
p(zt|z0:t−1, xt)p(z0:t−1|xt)p(xt)

p(zt|z0:t−1)p(z0:t−1)
(3.11)

=
p(zt|z0:t−1, xt)p(xt|z0:t−1)p(z0:t−1)p(xt)

p(zt|z0:t−1)p(z0:t−1)p(xt)
(3.12)

=
p(zt|xt)p(xt|z0:t−1)

p(zt|z0:t−1)
(3.13)

The structure of the update equation can be analyzed as

posterior =
likelihood · prior

evidence
(3.14)

CHAPTER 3. PARTICLE FILTERS - OVERVIEW 9

where the likelihood is given by the measurement model, the prior is
known from the prediction stage, and the evidence is a normalizing con-
stant that can be calculated by

p(zt|z0:t−1) =

∫
p(zt|xt)p(xt|z0:t−1)dxt (3.15)

While it seems that the Bayes Filter can provide an optimal solution, in
the sense of computing the posterior pdf, in fact the integrals are usually not
tractable and so in all but the simplest cases the Bayes Filter is not practical.
In the following section we describe the Particle Filter algorithm which employs
a sampling technique in order to approximate the optimal Bayesian solution.

3.3 Particle Filtering

Particle Filtering is a technique for estimating the hidden state Xt of a dynam-
ical system at time t, conditioned on sensor measurements. Note the slight
change of notation from xt to Xt. In particle filtering x is reserved for repre-
senting a particle. The goal of the Particle Filter is to estimate the posterior
probability density over the state space by using a set of samples (particles),
xit, of the state. A particle is an hypothesis as to what the true state is at time
t. Each sample is associated with a weight wit that indicates the quality, or
importance, of that sample. The set of particles is described as

Xt = {< xit, w
i
t > |i = 1, . . . , N} (3.16)

The intuition is to approximate the posterior density by the set of particles.
Ideally the likelihood of an hypothesis xit to be part of the particle set would
be proportional to its Bayes Filter posterior. The more densely a sub region of
the state space is populated by particles, the more likely it is for the true state
to be in that region.

The Particle Filter adds a third, re-sampling, step to the usual prediction-
update steps of the recursive filters:

Prediction A predicted particle x̂t+1 is created by modifying the particle xt
using a transition function f that depends on the current state estimate,
with an addition of random noise to simulate the effects of noise on the
true state.

x̂t+1 = f(xt) + µt (3.17)

where µt is the state noise as described in (3.4).

Update The associated weight of each particle is evaluated using the new
measurement zt.

wt+1 = g(x̂t+1, zt) + εt (3.18)

where εt is the measurement noise as in (3.5). The update function
g measures the similarity between the measurement zt and the particle
value x̂t+1.

The filter could have consisted of only these two steps (with a normaliza-

tion of weights
∑N
i=1 wi = 1 after the Update stage). The problem with this

CHAPTER 3. PARTICLE FILTERS - OVERVIEW 10

approach is that after a relatively small number of iterations, most particles
will have negligible weights (most of the weight will concentrate on only a few
particles). In effect these low weight particles are not used, though ideally they
could have been used to represent with greater resolution the space adjacent to
the true state. This is accomplished by adding a third step to the technique.

Re-sample A new set of particles Xt+1 is created by sampling N times,
with repetition, from the set of predicted particles X̂t+1 according to
the weights wit+1.

The re-sampling step shifts the particle set to areas of high probability.
Particles which had large weights are expected to produce more copies of them-
selves than low weight particles in the re-sampling process, thus focusing all
computational resources in areas which have greater probability of being the
correct state.

Doucet et al. [Doucet et al., 2001, 2000] show that this procedure approx-
imates the posterior density. The Particle Filter pseudo code is summarized
in Algorithm 1. Rows 2 − 6 build the predicted particle set X̂t+1, where the
prediction step is performed in line 4, and the update step at line 5. Lines 7
to 9 perform the re-sampling stage, which produces the new particle set Xt+1.

The power of Particle Filters lays in its ability to represent arbitrary prob-
ability densities, while spreading its computational resources according to the
observed distribution. Similar to MoG, it can represent multi modal distri-
butions, but it is superior to MoG due to the fact that it is not parametric.
MoG not only assumes the distribution is of a Gaussian Mixture form, it uses
a predetermined number of Gaussian components. If the modeled distribu-
tion contains more components the technique will inevitably mis-represent it.
While Histograms are a great tool for modeling distributions in a non para-
metric fashion, they spread their computational resources evenly between all
possible hypotheses. Particle Filters focus more resources on likely hypotheses.

Algorithm 1 Particle Filter Algorithm

ParticleFilter(Xt, zt+1)
1 X̂t+1 = Xt+1 = ∅
2 for i← 1 to N
3 do
4 x̂it+1 = f(xit) + µt
5 wit+1 = g(x̂it+1, zt) + εt
6 X̂t+1 = X̂t+1+ < x̂it+1, w

i
t+1 >

7 for n← 1 to N
8 do draw particle i with probability ∝ wit+1

9 Xt+1 = Xt+1+ < xit+1,
1
N >

10 return Xt+1

Chapter 4

Particle Filters for Background
Modeling

In this chapter we describe a naive use of Particle Filters for background mod-
eling. in Chapter 5 we analyze its drawbacks and describe improvements that
make Particle Filters more useful for background modeling.

To model the background we use Particle Filtering in a per-pixel manner.
Our particle filter background model was designed to estimate the color distri-
bution of the pixel, without making any parametric assumptions. The state of
pixel r at time t is the set Xt(r) as in Eq. (3.16) where the particles are vectors
over the RGB space.

4.1 Prediction

For a static camera and a relatively static background, we define a simple
transition function

x̂it+1(r) = xit(r) +N (0, σ) (4.1)

where the noise is sampled from a Normal distribution N with mean zero and
standard deviation σ. This allows the model to adapt to slow changes in the
background, and adds robustness for poor video quality.

4.2 Update

In the update stage the weight of the i’th particle xit(r) is set according to the
particle’s agreement with the current pixel value. We use the expression

wit+1(r) = exp

(
−‖x̂it+1(r)− It+1(r)‖2∞

2σ2
t (r)

)
(4.2)

where ‖ · ‖∞ is the infinity norm, using the largest difference among the color
channels, It(r) is the value of pixel r in frame t, and σt(r) is the standard
deviation of the pixel calculated by an exponential decaying window

µt(r) = α · µt−1(r) + (1− α) · It(r) (4.3)

σ2
t (r) = α · σ2

t−1(r) + (1− α) · (It(r)− µt(r))2 (4.4)

11

CHAPTER 4. PARTICLE FILTERS FOR BACKGROUND MODELING 12

α determines the time window in which pixels can influence the value of σ and
µ. We use α = 0.99. The statistics are initialized using the first 100 frames of
the sequence.

4.3 Re-Sample

Re-sampling is done as described in Chapter 3. For added speed a low variance
sampler [Thrun et al., 2005] can be used. The low variance sampler uses N
equally spread samples whose phase is determined by a single random draw. In
addition to saving time, this can also reduce the effects of the problem known
as sample variance in which the sampled distribution differs from the hidden,
real, distribution. However, in our experiments, switching between sampling
techniques did not have a significant effect on the results and so the results
presented here were achieved using the simple sampling algorithm.

4.4 Probability map and segmentation

The background probability of each pixel can be computed from its particle
set using an average of the strongest particles. First, the particles are sorted
according to their weights in descending order. Averaging the best particles is
done by

Pb(r) =
1

K

K∑
i=1

wi(r) (4.5)

where wi(r) are the sorted particles with weights as defined in Eq. (4.2), and
K = 0.75N .

Foreground segmentation is achieved by thresholding the probability map
Pb by a predefined value P

Foreground(r) =

{
0 Pb(r) < P

1 otherwise
(4.6)

We used P = 0.3 in all our experiments.

Chapter 5

Persistent Particles

In Chapter 4 we demonstrated how Particle Filters can be used to model back-
ground in color videos. Particle Filters usually require a large number of par-
ticles in order to accurately model complex distributions. For a background
modeling algorithm to be practical, the amount of memory used should be
minimal, and thus we need to limit the size of the particle set. In the following
we outline how to overcome the difficulties introduced by using a small amount
of particles.

5.1 Dormant Particles

A typical scene for surveillance cameras can involve a number of challenges
that any background subtraction algorithm needs to cope with. These include
dynamic background areas such as moving trees, shaking cameras, and fore-
ground objects that may fuse into the background, like a car pulling into a
parking space and staying there. The algorithm should be able to differentiate
the latter from another scenario in which the car only pauses for a while (for
instance while waiting at a traffic light) and then moves on. These types of
scenarios emphasize the multi-modal nature of the background scene. While
Particle Filters can represent arbitrary distributions this can require a large
number of samples. When using only a small particle set, the re-sampling
stage can cause one good particle (a particle whose color is close to the cur-
rent color of the pixel) to drastically change the entire set, collapsing it into
a unimodal representation. This is known as the Loss of Diversity problem.
To address these issues we introduce Persistent Particles, particles which keep
their estimation even when the rest of the sample population has shifted to a
different region of the state space.

The persistent particles are inspired by the behavior of microbial popu-
lation. The bacteria switch randomly between two states, a state of normal
growth and a dormant state in which they are less vulnerable to the effects of
stress such as antibiotics, and can overcome the stress condition when active
bacteria do not survive [Balaban et al., 2004].

We propose to divide the particles into two subsets: Active particles and
dormant or Persistent particles. Particles switch from active to persistent and
vice versa when certain conditions are met. A particle is considered active if
its current estimate of the background color (its RGB-vector) is close to the

13

CHAPTER 5. PERSISTENT PARTICLES 14

current pixel value. Otherwise it is considered persistent.

Persist(x(r)it) =

{
1 exp

(
−‖xi

t(r)−It(r)‖
2
∞

2σ2
t (r)

)
< P

0 else
(5.1)

where P is the probability threshold as used in Eq. (4.6).
Active particles behave in the way described in Chapter 4. Persistent par-

ticles have a different prediction step, and don’t participate in the re-sampling
stage. For a persistent particle x(r)it the prediction process is

x̂(r)it+1 =

{
I(r)t+1 p < T1

x(r)it else
(5.2)

where p is a uniform random number in the range [0, 1] and T1 is the persistence
threshold which indicates the duration in which particles remain in the dormant
state. In our experiments we used T1 = 1/1000, implying that each particle
has a 1/1000 probability to switch to the observed color.

Examining the parking car example we can now understand the effect of
these persistent particles - when a car enters the scene, the particles, tracking
the background color, will switch into the dormant phase and thus will not
track the color of the car even when it stops at the traffic light. If however the
car parks, the particles will gradually switch into active state and will start fol-
lowing its color distribution and eventually merge it into the background. The
amount of time for a stopped foreground object to merge into the background
is determined by the value of T1.

5.2 Color Jump For Scene Change

While the persistent particles ensure the multi-modal behavior of the sample
population, it can take a significant amount of time, in the order of 1/T1, for the
population to achieve a good representation of the pixel’s histogram. When
faced with a continuous, high frequency, change in the background, such as
moving trees, we would like the filter to adapt quickly to the dynamic nature
of the pixel. To handle such cases we give a pixel the ability to switch one
particle to the changing scene. But such changes must be separated in time
by enough frames. A particle is selected randomly and its value is switched to
the current color if

‖It(r)− It−1(r)‖∞ > T2 (5.3)

and time from last switch > J

where in our experiments we use J = 10, and T2 = 30. This allows for
quick adaptation of the filter for dynamic textures without contaminating the
particle set by passing objects. Due to the particles’ jump ability, the particle
set can adapt quickly to such changes and hold the various colors that repeat
in the background. Fig. 5.1 shows a scene in which trees are moving in the
wind. It shows how the particle set successfully reproduces the background
distribution.

CHAPTER 5. PERSISTENT PARTICLES 15

Figure 5.1: Dynamic backgrounds, such as trees moving in the wind, create difficulties to
accurately estimate the background distribution. Using the particle’s jump ability, the par-
ticle set is able to successfully represent the various background colors. The pixel marked by
a circle displays both wall and tree colors, as captured by its particle set.

It should be noted that in this section we address significant changes be-
tween successive frames, while in the handling of the dormant particles we ex-
amine differences between a particle and the latest frame. The Bacteria-Filter
pseudo code is summarized in Algorithm 2

CHAPTER 5. PERSISTENT PARTICLES 16

Algorithm 2 Bacteria Filter Algorithm

BacteriaFilter(X (r)t, It+1(r))
1 D(r)t+1 = A(r)t+1 = X (r)t+1 = ∅
2 for each Particle x(r)it in X (r)t
3 do
4 if exp

(
−‖xi

t(r)−It+1(r)‖2∞
2σ2

t (r)

)
< P

5 then
6 r = rand ([0, 1])
7 if r > T1
8 then
9 x(r)it+1 = x(r)it

10 D(r)t+1 = D(r)t+1 + i
11 else
12 x(r)it+1 = It+1(r)
13 else
14 x(r)it+1 = x(r)it +N (0, σ)
15 A(r)t+1 = A(r)t+1 + i
16
17 w(r)it+1 = exp

(
−‖xi

t(r)−It+1(r)‖2∞
2σ2

t (r)

)
18
19 Sort w(r)it+1 in descending order
20 K = 3

4N

21 Pb(r) = 1
K

∑K
i=1 w(r)it+1

22 NA = size of A
23 for n = 1 to NA
24 do
25 draw particle i with probability ∝ wit+1

26 Xt+1 = Xt+1+ < xit+1,
1
NA

>
27 Xt+1 = Xt+1 +D(r)t+1

28 return Xt+1

Chapter 6

Experiments

Our algorithm was tested on numerous video sequences. In all our tests we
assigned T1 = 0.001 (Eq. 5.2), T2 = 30, J = 10 (Eq. 5.3), P = 0.3 (Eq. 4.6),
and α = 0.99 (Eq. 4.3). The particle sets contained 20 particles, which were
initialized by the result of averaging the first 100 frames of the sequence. Each
particle is assigned the average of values witnessed for that pixel, with an
addition of random noise. We did not require that these frames be without
moving objects. For color videos of size 320 × 240 it runs at approximately 2
fps on an Intel core 2 Duo 2.53 GHz CPU.

We compare our results with the MoG algorithm [KaewTraKulPong and
Bowden, 2001] and the codebook technique [Kim et al., 2005], both as imple-
mented in OpenCV [Bradski and Kaehler, 2008]. For the Codebook algorithm
we used a 100 frame training period. For the MoG we used 5 Gaussian kernels.
We also implemented the histograms method [Ko et al., 2008]. To reduce com-
putation we used three color histograms quantified to 32 colors in each channel,
and did not use the spatial neighbors of a pixel. We used an α value of 0.999
for the histogram method. This is equivalent to our T1 value which controls
the speed at which foreground objects can be assimilated into the background
model.

In our comparisons we did not use any post processing techniques, such as
morphological operations, in order to make it easier to judge the capabilities
of each algorithm. Fig. 6.1 shows frames from a number of different video
sequences, and the results of the four algorithms on them. Bacteria-Filters
seems to perform best, and the histograms method second best. It is worth
noting that Bacteria-Filters and histograms produce segmentations which are
considerably cleaner than the other two methods. A closer examination of the
histograms method shows that it sometimes segments only partial foreground
objects. Bacteria-Filters, on the other hand, creates objects which are fuller
and have more precise outline. Note how in the sequence of the man with the
dog, the foreground mask of the man is full and yet the background between
the legs is not extracted as foreground.

In typical surveillance scenarios the scene can be constantly occupied by
moving foreground objects. Fig. 6.2 depicts an example from a highway mon-
itoring camera sequence in which there is no training frame without moving
objects. The segmentation results are of high accuracy without traces of the
moving objects that were present in the training period.

17

CHAPTER 6. EXPERIMENTS 18

Figure 6.1: Examples of foreground segmentation. From left to right: Input frame, Bacteria-
Filters, Histograms, Mixture of Gaussians, Codebook.

CHAPTER 6. EXPERIMENTS 19

Figure 6.2: Results from a 500 frame sequence in which there is no training period without
moving objects. A - input frame. B - probability map as calculated by Eq. (4.5), white
means high probability to be in the background. C - Segmentation.

Foreground objects that stop and later on resume motion can pose a prob-
lem for many background modeling algorithms. Ideally the algorithm should
retain knowledge of the background colors that are occluded by the object so
that when the object continues its movement it won’t mis-classify the back-
ground as a new object. If however the foreground object remains unmov-
ing eventually the algorithm should assimilate it into the background model.
Fig. 6.3 illustrates how the particles’ ability to switch into the persistent form
solves this problem. It shows a car pulling into a parking space, wait for a
while, and pull out. As shown, the particle set gradually integrates the car’s
colors into the background model. When the car exits, the set holds informa-
tion on both the car and the road, and so is able to correctly segment the scene.
As the sequence continues more particles shift into tracking the car colors, and
so if it had stayed it would have been merged into the background. Some of
the other methods, encounter difficulties retaining the background distribu-
tion when faced with a static foreground objects that contains colors which
are relatively similar to the background. The MoG technique blends the car
into the background very quickly, and the histogram method creates a ghost
segmentation when the car leaves. While the codebook algorithm maintains
good representation of the car during the scene, its foreground mask contain a
great degree of noise.

Some videos may contain low contrast or be in poor quality. The back-
ground model should be sensitive enough to detect all foreground objects in the
scene, yet discriminative as to not include too much false positive detections.
Fig. 6.4 shows detection results on a video in which visibility is reduced due to
rain and fog. In this scenario the difference in quality between the methods is
clear. Bacteria-Filters and histograms produce segmentations which are very
clean, and yet they both manage to detect even the small shapes of pedestrians
at the back of the image. The other two methods produce a great amount of
noise in this low contrast video. The size and shape of the noise in the fore-
ground mask is similar some of the actual foreground objects in the image.
This makes it very hard for any post processing technique to clean it and still
retain the desirable objects. As noticed before, Bacteria-Filters create fuller
foreground objects than histograms.

The authors would like to thank the ViSOR repository1, and Institut für

1http://www.openvisor.org

CHAPTER 6. EXPERIMENTS 20

Figure 6.3: The particle set gradually adjusts to the new colors of the stopped foreground
object allowing for accurate segmentation. Each block displays the results on one frame, with
the top section illustrating the particle set of a pixel in the circled area. The columns are
ordered from left to right: Bacteria-Filters, Histograms, Mixture of Gaussians, Codebook.
A - shows the scene as the cars enters. The particle set holds only road colors. B - displays
the segmentation when the car has just pulled into the parking space, note how the MoG
technique quickly assimilates it into the background. C - shows the car as it exits the scene.
The particle set holds both car and road colors.

CHAPTER 6. EXPERIMENTS 21

Figure 6.4: Rain and fog can create poor visibility in which foreground detection becomes
more difficult. A - input, B - Bacteria-Filters, C - Histograms, D - Mixture of Gaussians,
E - Codebook. In B and C, even the small detected object at the top corresponds to a real
person.

CHAPTER 6. EXPERIMENTS 22

Algorithmen und Kognitive Systeme2 for providing some of the videos pre-
sented.

2http://i21www.ira.uka.de

Chapter 7

In Practice

Foreground detection is a basic building block in many computer vision appli-
cations. For an algorithm to be useful in practice a number of requirements
must be met, and some modifications should be implemented. In this chapter
we address the changes between a background subtraction algorithm, and a
full foreground detection system.

7.1 Cleaning the foreground mask

The foreground mask which is the result of (4.6) may mis-classify pixels. There
are two types of errors: false positives - in which pixels are marked as fore-
ground when they belong to the background, and false negatives, in which some
foreground pixels are missed. Usually some post processing is done to clean
the foreground mask which, in some cases, remove false positive predictions.
In other cases processing techniques such as Morphological operations can cor-
rect false negative results by closing holes in foreground areas. Recently there
is growing popularity for using the min-cut algorithm to segment the image,
instead of using a single threshold as in (4.6). The benefits of using this tech-
nique is that it takes into account not only the probability value of the pixel,
but also its similarity to its neighbors. This allows the technique to address
both problems simultaneously.

Min-Cut Segmentation

The foreground extraction task can also be addressed as a graph labeling proce-
dure, where the nodes are the pixels of the input image, and each pixel r should
be given a label Lr as either foreground (Lr = 1) or background (Lr = 0). In
[Boykov and Jolly, 2001] it was shown that the labeling problem can be solved
using min-cut if it is stated as an energy minimization problem.

E(L) = δ ·
∑
r∈I

Ed(Lr) +
∑

(r,q)∈ν

Es(Lr, Lq) (7.1)

where Ed is a data term providing external constraints (the probability of r
belonging to the background), Es is a smoothness term defined over neighboring
pixels ν, and δ is a user defined weight, balancing the two terms.

23

CHAPTER 7. IN PRACTICE 24

Figure 7.1: The graph induced from an image and the resulting minimal cut on it.

Ed(Lr) =

{
Pb(r) Lr = 1

1− Pb(r) otherwise
(7.2)

The data term is the cost of assigning r with the label Lr.

Es(Lr, Lq) = |Lr − Lq| · e−β·dr,q (7.3)

where

dr,q = ‖I(r)− I(q)‖22 (7.4)

β = (2 · IE[‖I(r)− I(q)‖22])−1 (7.5)

The smoothness term is the cost of assigning pixel r and q different labels.
The desired labeling is then achieved by minimizing the energy function using
the implementation of the min-cut algorithm described in [Boykov and Kol-
mogorov, 2004]. A graph is induced from the image by creating a node for
each pixel. Neighboring pixels are joined by edges with weights according to
the smoothness term. Each node is also connected to a foreground terminal
and an object terminal, with weights according to the data term. Figure 7.1
(Taken from Boykov and Jolly [2001]) shows an illustration of a graph induced
from an image, and the resulting cut.

Using this technique can provide cleaner segmentation result as the algo-
rithm takes into account the smoothness of the region around the segmentation
border. Figure 7.2 shows the added accuracy gained by applying min-cut to
the segmentation procedure. Note how in the bottom row using min-cut has
cleaned pixels which have been wrongly classified as foreground, while in the
top row it created full objects that are without holes.

CHAPTER 7. IN PRACTICE 25

Figure 7.2: By using the min-cut algorithm instead of a single threshold on the probability
image better segmentations can be achieved. From left to right: input frame, background
probability, foreground segmentation using the single threshold in (4.6), foreground segmen-
tation using min cut. In the top row the foreground objects created by using min-cut are
without holes which are found in the single threshold technique. In the bottom two rows
pixels which are wrongly classified as foreground when using a threshold are not present
when using min-cut.

7.2 Speed And Scalability

A foreground detection algorithm should consume minimal computational re-
sources, and work close to real time. It is favorable if it can be easily scaled
to a multi processor environment allowing for an increase of running speed
proportional to the increase in computational power.

The algorithm we have introduced takes relatively little memory. It re-
quires less than the histograms method, significantly so if the color channels
are not assumed to be independent. While it takes more memory than the
MoG technique, our method allows for non parametric distributions. As each
pixel is considered independently, and in every pixel each particle is handled
independently of its peers, our algorithm is extremely easy to implement for
a multi processor (or even, for the case of GPGPU, massive multi processor)
environments.

Chapter 8

Discussion

In this thesis, a novel background modeling technique has been introduced.
Our algorithm is based on the well known Particle Filter framework which has
been shown to be a robust and efficient technique for many applications. The
Particle Filter algorithm is very successful in estimating a variety of probability
density functions. Its popularity can be attributed to both its versatility and
to the fact that it can be easily implemented.

We have modified the Particle Filter framework, allowing particles to be-
come persistent, or dormant, and thus avoid being replaced due to a few outlier
measurements, and a jump ability which enables particles to adapt quickly to
multi modal distributions. These two changes help make the framework practi-
cal for background subtraction. The dormant particles allow for a small particle
set to be used, in the order of 20 particles. This is due to their ability to retain
their parameters even when the current frame contains significantly different
colors. The jump ability allows for fast changes to the particle set if the scene
contains high frequency temporal color changes.

It was shown that this technique can accurately model the background
color distribution even when faced with repetitive background movement, multi
modal backgrounds and illumination changes.

26

Bibliography

N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler. Bacte-
rial Persistence as a Phenotypic Switch. Science, 305(5690):1622–1625,
2004. doi: 10.1126/science.1099390. URL http://www.sciencemag.org/

cgi/content/abstract/305/5690/1622. [cited on p. 13]

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1124–1137, 2004.
[cited on p. 24]

Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary
region segmentation of objects in n-d images. In Proc. Eighth IEEE Interna-
tional Conference on Computer Vision ICCV 2001, volume 1, pages 105–112,
July 7–14, 2001. doi: 10.1109/ICCV.2001.937505. [cited on p. 23, 24]

G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the
OpenCV Library. O’Reilly, Cambridge, MA, 2008. [cited on p. 17]

A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and computing, 10(3):197–208,
2000. [cited on p. 10]

A. Doucet, N. De Freitas, and N. Gordon. Sequential Monte Carlo methods in
practice. Springer Verlag, 2001. [cited on p. 10]

O. Javed, K. Shafique, and M. Shah. A hierarchical approach to robust back-
ground subtraction using color and gradient information. In IEEE Workshop
on Motion and Video Computing, volume 75, 2002. [cited on p. 3]

P. KaewTraKulPong and R. Bowden. An improved adaptive background mix-
ture model for real-time tracking with shadow detection. In Proc. European
Workshop Advanced Video Based Surveillance Systems, volume 1. Citeseer,
2001. [cited on p. 3, 17]

K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis. Real-time
foreground-background segmentation using codebook model. Real-Time
Imaging, 11(3):172 – 185, 2005. ISSN 1077-2014. doi: DOI:10.1016/j.
rti.2004.12.004. URL http://www.sciencedirect.com/science/article/

B6WPR-4FV362T-1/2/64a99673b255f07c51631846435c3ba5. Special Issue
on Video Object Processing. [cited on p. 5, 17]

27

http://www.sciencemag.org/cgi/content/abstract/305/5690/1622
http://www.sciencemag.org/cgi/content/abstract/305/5690/1622
http://www.sciencedirect.com/science/article/B6WPR-4FV362T-1/2/64a99673b255f07c51631846435c3ba5
http://www.sciencedirect.com/science/article/B6WPR-4FV362T-1/2/64a99673b255f07c51631846435c3ba5

BIBLIOGRAPHY 28

T. Ko, S. Soatto, and D. Estrin. Background subtraction on distributions. In
Proceedings of the 10th European Conference on Computer Vision: Part III,
page 289. Springer, 2008. [cited on p. 4, 17]

D. Lee, J. Hull, and B. Erol. A Bayesian framework for Gaussian mixture
background modeling. 3:973–976, 2003. [cited on p. 3]

C. Stauffer and W. Grimson. Adaptive background mixture models for real-
time tracking. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 2, pages 246–252, 1999.
[cited on p. 3]

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005. ISBN 0262201623.
[cited on p. 12]

K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles
and practice of background maintenance. In International Conference on
Computer Vision, volume 1, page 29. Kerkyra, Greece, 1999. [cited on p. 4]

C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time
tracking of the human body. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):780–785, 1997. [cited on p. 3]

List of Figures

2.1 The shortcomings of treating the color channels independently can
be understood by examining a toy example, displaying repetitive
background motions between a tree leaf moving in the wind and
the sky that is visible behind it. Let the distribution of a certain
pixel be such that half the time its color is blue (sky), and half the
time it is green (leaf). We omit the Red channel for simplicity. We
would expect the distribution to be such that green/blue would get
a 50% probability of belonging to the background, and all other
colors would have probability (close to) 0. However, when using
information from only one color channel at a time, any color having
a green or blue component (e.g. cyan: green + blue) will have high
probability. 5

5.1 Dynamic backgrounds, such as trees moving in the wind, create dif-
ficulties to accurately estimate the background distribution. Using
the particle’s jump ability, the particle set is able to successfully
represent the various background colors. The pixel marked by a
circle displays both wall and tree colors, as captured by its particle
set. 15

6.1 Examples of foreground segmentation. From left to right: Input
frame, Bacteria-Filters, Histograms, Mixture of Gaussians, Codebook. 18

6.2 Results from a 500 frame sequence in which there is no training
period without moving objects. A - input frame. B - probability
map as calculated by Eq. (4.5), white means high probability to be
in the background. C - Segmentation. 19

6.3 The particle set gradually adjusts to the new colors of the stopped
foreground object allowing for accurate segmentation. Each block
displays the results on one frame, with the top section illustrating
the particle set of a pixel in the circled area. The columns are
ordered from left to right: Bacteria-Filters, Histograms, Mixture of
Gaussians, Codebook. A - shows the scene as the cars enters. The
particle set holds only road colors. B - displays the segmentation
when the car has just pulled into the parking space, note how the
MoG technique quickly assimilates it into the background. C -
shows the car as it exits the scene. The particle set holds both
car and road colors. 20

29

List of Figures 30

6.4 Rain and fog can create poor visibility in which foreground detec-
tion becomes more difficult. A - input, B - Bacteria-Filters, C -
Histograms, D - Mixture of Gaussians, E - Codebook. In B and C,
even the small detected object at the top corresponds to a real person. 21

7.1 The graph induced from an image and the resulting minimal cut on
it. 24

7.2 By using the min-cut algorithm instead of a single threshold on the
probability image better segmentations can be achieved. From left
to right: input frame, background probability, foreground segmen-
tation using the single threshold in (4.6), foreground segmentation
using min cut. In the top row the foreground objects created by us-
ing min-cut are without holes which are found in the single threshold
technique. In the bottom two rows pixels which are wrongly clas-
sified as foreground when using a threshold are not present when
using min-cut. 25

	Introduction
	Thesis Overview

	Motivation And Related Work
	Particle Filters - Overview
	Recursive State Estimation
	Bayes Filter
	Particle Filtering

	Particle Filters for Background Modeling
	Prediction
	Update
	Re-Sample
	Probability map and segmentation

	Persistent Particles
	Dormant Particles
	Color Jump For Scene Change

	Experiments
	In Practice
	Cleaning the foreground mask
	Speed And Scalability

	Discussion
	Bibliography
	List of Figures

